计算机科学 ›› 2024, Vol. 51 ›› Issue (9): 129-139.doi: 10.11896/jsjkx.230800098
李鑫1, 普园媛1,2, 赵征鹏1, 李煜潘1, 徐丹1
LI Xin1, PU Yuanyuan1,2, ZHAO Zhengpeng1, LI Yupan1, XU Dan1
摘要: 目前的研究表明,通用风格迁移取得了显著成功,即能将任意视觉风格迁移到内容图像。然而,在图像任意风格迁移的评价维度中,只考虑语义结构的保留度和风格图案的多样性是不全面的,还应将艺术美感纳入考量范围。现有方法普遍存在艺术美感不自然的问题——表现为风格化图像中会出现不和谐的图案和明显的伪影,很容易与真实的艺术作品区分开来。针对该问题,提出了一种艺术美感增强的图像任意风格迁移方法。首先,设计了一个多尺度艺术美感增强模块,通过提取不同尺度的风格图像特征,改善了风格化图案不和谐的问题;同时,设计了一个美感风格注意力模块,使用通道注意力机制,根据艺术美感特征的全局美感通道分布自适应地匹配并增强相应的风格特征;最后,提出了一个协方差变换融合模块,将增强后的风格特征的二阶统计数据迁移到对应的内容特征上,在很好地保留内容结构的同时实现了美感增强的风格迁移。通过与4种最新的风格迁移方法进行定性比较,同时进行消融实验,分别验证了所提模块与所加损失函数的有效性;在5项定量指标的对比中,有4项取得最优分数。实验结果表明,所提方法可以生成艺术美感更和谐的风格迁移图像。
中图分类号:
[1]YANG Q X,PU Y Y,ZHAO Z P,et al.W2GAN:ImportanceWeight and Wavelet feature guided Image-to-Image translation under limited data[J].Computers & Graphics,2023,116:115-127. [2]WANG C,NIE R,CAO J,et al.IGNFusion:An Unsupervised Information Gate Network for Multimodal Medical Image Fusion[J].IEEE Journal of Selected Topics in Signal Processing,2022,16(4):854-868. [3]GATYS L A,ECKER A S,BETHGE M.Image style transferusing convolutional neural networks[C]//IEEE Conference on Computer Vision and Pattern Recognition.New York:IEEE Press,2016:2414-2423. [4]LI Y J,FANG C,YANG J M,et al.Universal style transfer via feature transforms.[C]//Advances in Neural Information Processing Systems(NeurIPS).2017:386-396. [5]HUANG X,BELONGIE S.Arbitrary style transfer in real-time with adaptive instance normalization[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision(ICCV).2017:1501-1510. [6]LI X T,LIU S F,KAUTZ J,et al.Learning Linear Transformations for Fast Image and Video Style Transfer[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).2019:3809-3817. [7]HU Z Y,JIA J,LIU B,et al.Aesthetic-aware image style transfer[C]//Proceedings of the 28th ACM International Conference on Multimedia.2020:3320-3329. [8]AN J,HUANG S Y,SONG Y B,et al.ArtFlow:UnbiasedImage Style Transfer via Reversible Neural Flows[C]//Procee-dings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).2021:862-871. [9]PARK D Y,LEE K H.Arbitrary style transfer with style-attentional networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).2019:5880-5888. [10]DENG Y Y,TANG F,DONG W M,et al.Arbitrary style transfer via multi-adaptation network[C]//Proceedings of the 28th ACM International Conference on Multimedia.2020:2719-2727. [11]LUO X,HAN Z,YANG L,et al.Consistent Style Transfer[J].arXiv:2201.02233,2022. [12]LIU S H,LIN T W,HE D L,et al.Adaattn:Revisit attention mechanism in arbitrary neural style transfer[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision(ICCV).2021:6649-6658. [13]ZHANG Y L,FANG C,WANG Y L,et al.Multimodal style transfer via graph cuts[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision(ICCV).2019:5943-5951. [14]LI C C,CHEN T.Aesthetic visual quality assessment of pain-tings[J].IEEE Journal of selected topics in Signal Processing,2009,3(2):236-252. [15]JUSTIN J,ALEXANDRE A,LI F F.Perceptual losses for real-time style transfer and super-resolution[C]//Proceedings of the European Conference on Computer Vision(ECCV).Springer,2016:694-711. [16]ULYANOV D,LEBEDEV V,VEDALDI A,et al.Texture Networks:Feed-forward Synthesis of Textures and Stylized Images[C]//International Conference on Machine Learning(ICML).2016:1349-1357. [17]LI X,PU Y Y,ZHAO Z,et al.Artistic style transfer based on matching content semantics and style features[J].Journal of Graphics,2023,44(4):699-709. [18]WANG Z Z,ZHANG Z J,ZHAO L,et al.AesUST:TowardsAesthetic-Enhanced Universal Style Transfer[C]//Proceedings of the 30th ACM International Conference on Multimedia.2022:1095-1106. [19]WU Z J,ZHU Z,DU J P,et al.CCPL:Contrastive Coherence Preserving Loss for Versatile Style Transfer[C]//European Conference on Computer Vision(ECCV).Lecture Notes in Computer Science,2022. [20]ZHANG Y X,TANG F,DONG W M,et al.Domain Enhanced Arbitrary Image Style Transfer via Contrastive Learning[C]//ACM SIGGRAPH 2022 Conference Proceedings(SIGGRAPH'22).New York:Association for Computing Machinery,2022. [21]WEN L F,GAO C Y,ZOU C Q.CAP-VSTNet:Content Affinity Preserved Versatile Style Transfer[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).2023:18300-18309. [22]LIC,WAND M.Combining markov random fields and convolutional neural networks for image synthesis[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).2016:2479-2486. [23]CHEN T Q,SCHMIDTM.Fast patch-based style transfer of arbitrary style[J].arXiv:1612.04337,2016. [24]SHENG L,LIN Z Y,SHAO J,et al.Avatar-Net:Multi-scale Zero-shot Style Transfer by Feature Decoration[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).2018:8242-8250. [25]DENG Y Y,TANG F,DONG W M,et al.Arbitrary style transfer via multi-adaptation network[C]//Proceedings of the 28th ACM International Conference on Multimedia.2020:2719-2727. [26]LIU H,PU Y Y,LV D H,et al.Automatic coloring of images with polarized self-attention-constrained color overflow [J].Computer Science,2023,50(3):208-215. [27]ZHU P J,PU Y Y,ZHAO Z P,et al.A review of the research on natural image coloring [J].Journal of Yunnan University(Natural Science Edition),2023,45(2):314-325. [28]KONG F M,PU Y Y,ZHAO Z P,et al.Portrait ManHuaHua based on double circular mapping networks [J/OL].Computer Application Research:1-7.[2023-09-27].https://doi.org/10.19734/j.issn.1001-3695.2023.05.0226. [29]YAO W J,ZHAO Z P,PU Y Y,et al.A Cuan-style migration model for dense adaptive generative adversarial networks [J].Journal of Computer-Aided Design and Graphics,2023,35(6):915-924. [30]LV W R,PU Y Y,ZHAO Z P et al.Font migration based on font perception and attention normalization [J].Computer Science,2023,50(S1):408-413. [31] AYDIN T O,SMOLIC A,GROSS M.Automated aesthetic ana-lysis of photographic images[J].IEEE Transactions on Visua-lization and Computer Graphics(TVCG),2014,21(1):31-42. [32]WANG Z H,ZHAO L,CHEN H B,et al.Evaluate and improve the quality of neural style transfer[J] Computer Vision and Image Understanding,2021(207):103203. [33]CHEN H B,ZHAO L,ZHANG H M,et al.Diverse image style transfer via invertible cross-space mapping[C] // 2021 IEEE/CVF International Conference on Computer Vision(ICCV).2021:14860-14869. [34]ZUO Z W,ZHAO L,LIAN S B,et al.Style Fader Generative Adversarial Networks for Style Degree Controllable Artistic Style Transfer[C]//Proceedings of the Thirty-First Interna-tional Joint Conference on Artificial Intelligence(IJCAI).2022:5002-5009. [35]SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition [C]//International Conference on Learning Representations.2015. [36]WANG T,LIU M Y,ZHU J Y,et al.High-Resolution ImageSynthesis and Semantic Manipulation with Conditional GANs [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.2018:8798-8807. [37]FU J,LIU J,TIAN H J,et al.Dual attention network for scene segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).2019:3146-3154. [38]DENG Y,TANG F,DONG W,et al.Arbitrary video style transfer via multi-channel correlation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:1210-1217. [39]LIN T Y,MAIRE M,BELONGIE S,et al.Microsoft COCO:Common Objects in Context[C]//Proceedings of the European Conference on Computer Vision(ECCV).Zurich:Springer,2014:740-755. [40]PHILLIPS F,MACKINTOSH B.WikiArt Gallery,Inc.:A case for critical thinking[J].Issues in Accounting Education,2011,26(3):593-608. [41]KINGMA D P,BA J.Adam:A method for stochastic optimization[J].arXiv:1412.6980,2014. [42]HEUSEL M,RAMSAUER H,UNTERTHINER T,et al.Gans trained by a two time-scale update rule converge to a local nash equilibrium[C]//Advances in Neural Information Processing Systems.2017. [43]WANG Z Z,ZHAO L,CHEN H B,et al.Evaluate and improve the quality of neural style transfer[J].Computer Vision and Image Understanding,2021,207:103203. |
|