计算机科学 ›› 2025, Vol. 52 ›› Issue (1): 412-419.doi: 10.11896/jsjkx.231100076

• 信息安全 • 上一篇    

基于SE注意力多源域对抗网络的射频指纹识别

苏超然, 张大龙, 黄勇, 董安   

  1. 郑州大学网络空间安全学院 郑州 450002
  • 收稿日期:2023-11-13 修回日期:2024-04-05 出版日期:2025-01-15 发布日期:2025-01-09
  • 通讯作者: 黄勇(yonghuang@zzu.edu.cn)
  • 作者简介:(chaoransu@gs.zzu.edu.cn)
  • 基金资助:
    国家自然科学基金(62301499)

RF Fingerprint Recognition Based on SE Attention Multi-source Domain Adversarial Network

SU Chaoran, ZHANG Dalong, HUANG Yong, DONG An   

  1. School of Cyber Science and Engineering,Zhengzhou University,Zhengzhou 450002,China
  • Received:2023-11-13 Revised:2024-04-05 Online:2025-01-15 Published:2025-01-09
  • About author:SU Chaoran,born in 1999,postgra-duate.Her main research interests include wireless communication security and RF fingerprint recognition.
    HUANG Yong,born in 1993,Ph.D,is a member of CCF(No.L5873M).His main research interests include network information security and so on.
  • Supported by:
    National Natural Science Foundation of China(62301499).

摘要: 射频指纹利用射频前端的硬件特征作为标识符对设备进行识别。针对现有射频指纹识别研究忽略接收机硬件特性的干扰,导致模型在不同接收机设备上泛化性较差的问题,提出一种基于SE(Squeeze-and-Excitation)注意力多源域对抗网络的射频指纹识别方法。该方法采用多个源域有标签数据和少量目标域无标签数据进行对抗训练以提取与接收机域无关的特征;融合SE注意力机制增强模型对发送机射频指纹特征的学习能力;结合极少量目标域有标签数据对模型参数进行微调,进一步提高发送机识别性能。在Wisig公开数据集上的实验结果表明:该方法在跨接收机场景下可有效识别发送机设备,平均准确率可达83.1%;加入少量有标签数据微调后平均准确率可进一步提高至93.1%。

关键词: 射频指纹识别, 多源域对抗, 深度学习, 物理层安全, SE注意力机制

Abstract: RF fingerprinting uses the hardware features of RF front-end as identifiers to identify devices.Aiming at the problem that existing RF fingerprinting research ignores the interference of receiver hardware features,resulting in poor generalization of the model on different receiver devices,an RF fingerprinting method based on squeeze and excitation(SE) attention multi-source domain adversarial network is proposed.Multiple source-domain labelled data and a small amount of target-domain unlabelled data are used for adversarial training to extract receiver-domain independent features.Incorporating SE attention mechanism enhances the model’s ability to learn RF fingerprint features from the transmitter.The model parameters are fine-tuned by combining a very small amount of tagged data in the target domain to further improve the performance of transmitter identification.Experimental results on the Wisig dataset show that this method can effectively identify the transmitter device in the cross-receiver scenario,with an average accuracy of up to 83.1%,and the average accuracy can be further improved to 93.1% by adding a small amount of tagged data to fine-tune the model.

Key words: RF fingerprint recognition, Multi-source domain adversarial, Deep learning, Physical layer security, SE attention

中图分类号: 

  • TP309
[1]XU Q,ZHENG R,SAAD W,et al.Device fingerprinting inwireless networks:Challenges and opportunities[J].IEEE Communications Surveys & Tutorials,2015,18(1):94-104.
[2]ZOU Y,ZHU J,WANG X,et al.A survey on wireless security:Technical challenges,recent advances,and future trends[C]//Proceedings of the IEEE.2016:1727-1765.
[3]JAGANNATH A,JAGANNATH J,KUMAR P S P V.A comprehensive survey on radio frequency(rf) fingerprinting:Traditional approaches,deep learning,and open challenges[J].Computer Networks,2022,219:109455.
[4]SOLTANIEH N,NOROUZI Y,YANG Y,et al.A review of radio frequency fingerprinting techniques[J].IEEE Journal of Radio Frequency Identification,2020,4(3):222-233.
[5]HALL J,BARBEAU M,KRANAKIS E.Radio frequency fin-gerprinting for intrusion detection in wireless networks[J].IEEE Transactions on Defendable and Secure Computing,2005,12:1-35.
[6]NICOLUSSI A,TANNER S,WATTENHOFER R.Aircraftfingerprinting using deep learning[C]//2020 28th European Signal Processing Conference(EUSIPCO).IEEE,2021:740-744.
[7]CHEN X,WANG L D,XU X,et al.A review of RF fingerprintidentification methods based on Raw I/Q and deep learning[J].Radar Journal,2023,12(1):214-234.
[8]LIU P,YANG P,SONG W Z,et al.Real-time identification of rogue WiFi connections using environment-independent physical features[C]//IEEE INFOCOM 2019-IEEE Conference on Computer Communications.IEEE,2019:190-198.
[9]BRIK V,BANERJEE S,GRUTESER M,et al.Wireless device identification with radiometric signatures[C]//Proceedings of the 14th ACM International Conference on Mobile Computing and Networking.2008:116-127.
[10]SATIJA U,TRIVEDI N,BISWAL G,et al.Specific emitteridentification based on variational mode decomposition and spectral features in single hop and relaying scenarios[J].IEEE Transactions on Information Forensics and Security,2018,14(3):581-591.
[11]JIAN T,RENDON B C,OJUBA E,et al.Deep learning for RF fingerprinting:A massive experimental study[J].IEEE Internet of Things Magazine,2020,3(1):50-57.
[12]RIYAZ S,SANKHE K,IOANNIDIS S,et al.Deep learning convolutional neural networks for radio identification[J].IEEE Communications Magazine,2018,56(9):146-152.
[13]GOPALAKRISHNAN S,CEKIC M,MADHOW U.Robustwireless fingerprinting via complex-valued neural networks[C]//2019 IEEE Global Communications Conference(GLOBECOM).IEEE,2019:1-6.
[14]SHEN G,ZHANG J,MARSHALL A,et al.Radio frequencyfingerprint identification for LoRa using spectrogram and CNN[C]//IEEE INFOCOM 2021-IEEE Conference on Computer Communications.IEEE,2021:1-10.
[15]SHEN G,ZHANG J,MARSHALL A,et al.Radio frequencyfingerprint identification for LoRa using deep learning[J].IEEE Journal on Selected Areas in Communications,2021,39(8):2604-2616.
[16]DU Z,LIU D,ZHANG J,et al.RSEN-RFF:Deep Learning-Based RF Fingerprint Recognition in Noisy Environment[C]//Artificial Intelligence for Communications and Networks:Third EAI International Conference.Springer International Publi-shing,2021:87-99.
[17]GU H,SU L,ZHANG W,et al.Attention is needed for RF fingerprinting[J].IEEE Access,2023,11:87316-87329.
[18]JIANG Q,SHA J.The Use of SNN for Ultralow-Power RF Fingerprinting Identification with Attention Mechanisms in VDES-SAT[J].IEEE Internet of Things Journal,2023,10(17):15594-15603.
[19]WENG L,PENG J,LI J,et al.Message structure aided attentional convolution network for rf device fingerprinting[C]//2020 IEEE/CIC International Conference on Communications in China(ICCC).IEEE,2020:495-500.
[20]ZHANG J,WOODS R,SANDELL M,et al.Radio frequency fingerprint identification for narrowband systems,modelling and classification[J].IEEE Transactions on Information Forensics and Security,2021,16:3974-3987.
[21]HANNA S,KARUNARATNE S,CABRIC D.WiSig:A large-scale WiFi signal dataset for receiver and channel agnostic RF fingerprinting[J].IEEE Access,2022,10:22808-22818.
[22]XIE Q,DAI Z,DU Y,et al.Controllable invariance through adversarial feature learning[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.2017:585-596.
[23]GANIN Y,LEMPITSKY V.Unsupervised domain adaptationby backpropagation[C]//International Conference on Machine Learning.PMLR,2015:1180-1189.
[24]WANG J,ZHENG V W,CHEN Y,et al.Deep transfer learning for cross-domain activity recognition[C]//proceedings of the 3rd International Conference on Crowd Science and Enginee-ring.2018:1-8.
[25]GUO Y X,YANG W,LIU Q,et al.A review of residual network research[J].Computer Application Research,2020,37(5):1292-1297.
[26]HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141.
[27]WOO S,PARK J,LEE J Y,et al.Cbam:Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:3-19.
[28]HOU Q,ZHOU D,FENG J.Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:13713-13722.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!