计算机科学 ›› 2025, Vol. 52 ›› Issue (10): 258-265.doi: 10.11896/jsjkx.250100114
王叶, 王中卿
WANG Ye, WANG Zhongqing
摘要: 细粒度情感分析旨在识别句子中每个方面的情感极性。然而,现有研究大多忽视了评论文本中普遍存在的冗余信息,这些无关信息不仅增加了模型处理的复杂性,还可能导致模型无法准确捕捉原始文本中的情感元素。为解决这一问题,提出了一种将原始文本转化为简化子句的模型,以更简明的方式表达相同的情感观点。其基本思想是利用大型语言模型预识别文本中的方面词和意见词,再基于识别结果生成简化子句,并通过自我验证机制确保生成的子句满足情感一致性、相关性和简洁性。此外,所提模型结合原始文本和简化子句共同生成情感元素。在公开数据集 Restaurant和 Laptop以及 Phone上,所提模型的表现均优于现有基线模型,证明简化子句在细粒度情感分析中具有重要的作用。
中图分类号:
[1]LIU P,JOTY S,MENG H.Fine-grained opinion mining with recurrent neural networks and word embeddings[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing.2015:1433-1443. [2]XU H,LIU B,SHU L,et al.Double embeddings and CNN-based sequence labeling for aspect extraction[J].arXiv:1805.04601,2018. [3]ZHOU X,WAN X,XIAO J.Representation learning for aspect category detection in online reviews[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2015. [4]PENG H,XU L,BING L,et al.Knowing what,how and why:A near complete solution for aspect-based sentiment analysis[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:8600-8607. [5]WAN H,YANG Y,DU J,et al.Target-aspect-sentiment jointdetection for aspect-based sentiment analysis[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:9122-9129. [6]ZHANG W,LI X,DENG Y,et al.A survey on aspect-basedsentiment analysis:Tasks,methods,and challenges[J].IEEE Transactions on Knowledge and Data Engineering,2022,35(11):11019-11038. [7]YAN H,DAI J,QIU X,et al.A unified generative framework for aspect-based sentiment analysis[J].arXiv:2106.04300,2021. [8]ZHANG W,LI X,DENG Y,et al.Towards generative aspect-based sentiment analysis[C]//ACL 2021.2021. [9]LIU J,TENG Z,CUIL,et al.Solving aspect category sentiment analysis as a text generation task[J].arXiv:2110.07310,2021. [10]ZHANG W,DENG Y,LI X,et al.Aspect sentiment quad prediction as paraphrase generation[J].arXiv:2110.00796,2021. [11]LU Y,LIU Q,DAI D,et al.Unified structure generation foruniversal information extraction[J].arXiv:2203.12277,2022 [12]BAO X,WANG Z,JIANG X,et al.Aspect-based SentimentAnalysis with Opinion Tree Generation[C]//IJCAI.2022:4044-4050. [13]TANG D,QIN B,FENG X,et al.Effective LSTMs for target-dependent sentiment classification[J].arXiv:1512.01100,2015. [14]BU J,REN L,ZHENG S,et al.ASAP:A Chinese review dataset towards aspect category sentiment analysis and rating prediction[J].arXiv:2103.06605,2021. [15]CHEN Z,QIAN T.Relation-aware collaborative learning for unified aspect-based sentiment analysis[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.2020:3685-3694. [16]ZHANG M,QIAN T.Convolution over hierarchical syntacticand lexical graphs for aspect level sentiment analysis[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing(EMNLP).2020:3540-3549. [17]GOU Z,GUO Q,YANG Y.Mvp:Multi-view prompting im-proves aspect sentiment tuple prediction[J].arXiv:2305.12627,2023. [18]YU J,GUO Y,RUAN Q M.Aspect-level sentiment triple extraction based on set prediction[J].Journal of Chinese Information Processing,2024,38(8):147-157. [19]WANG Q,DING K,LUO X,et al.Improving in-context learning via sequentially selection and preference alignment for few-shot aspect-based sentiment analysis[C]//Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval.2024:2462-2466. [20]VACAREANU R,VARIA S,HALDER K,et al.A Weak Supervision Approach for Few-Shot Aspect Based Sentiment[J].arXiv:2305.11979,2023. [21]GOODING S.On the ethical considerations of text simplification[J].arXiv:2204.09565,2022. [22]BIRAN O,BRODY S,ELHADAD N.Putting it simply:a context-aware approach to lexical simplification[C]//Proceedings of the 49th Annual Meeting of the Association for Computa-tional Linguistics:Human Language Technologies.2011:496-501. [23]GOODING S,KOCHMAR E.Recursive context-aware lexicalsimplification[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing(EMNLP-IJCNLP).2019:4853-4863. [24]SIDDHARTHAN A.Syntactic simplification and text cohesion[J].Research on Language and Computation,2006,4(1):77-109. [25]ALUÍSIO S,GASPERIN C.Fostering digital inclusion and accessibility:the PorSimples project for simplification of Portuguese texts[C]//Proceedings of the NAACL HLT 2010 Young Investigators Workshop on Computational Approaches to Languages of the Americas.2010:46-53. [26]BURSTEIN J,HORBACH A,KOCHMAR E,et al.Proceedings of the 16th Workshop on Innovative Use of NLP for Building Educational Applications[C]//Proceedings of the 16th Workshop on Innovative Use of NLP for Building Educational Applications.2021. [27]DEVARAJ A,SHEFFIELD W,WALLACE B C,et al.Evaluating factuality in text simplification[C]//Proceedings of the conference.Association for Computational Linguistics.Meeting.2022,2022:7331. [28]XIAO Z H,CHENG M M,GONG J F,et al.Research on Chinese vocabulary simplification based on hint fine-tuning[J].Journal of Chinese Information Processing,2024,38(8):34-43. [29]SUN R,XU W,WAN X.Teaching the pre-trained model to generate simple texts for text simplification[J].arXiv:2305.12463,2023. [30]ANSCHÜTZ M,OEHMS J,WIMMER T,et al.Language mo-dels for German text simplification:Overcoming parallel data scarcity through style-specific pre-training[J].arXiv:2305.12908,2023. [31]TRIENES J,JOSEPH S,SCHLÖTTERER J,et al.Info-LossQA:Characterizing and recovering information loss in text simplification[J].arXiv:2401.16475,2024. [32]JIANG X,YOU P,CHEN C,et al.Exploring scope detection for aspect-based sentiment analysis[J].IEEE/ACM Transactions on Audio,Speech,and Language Processing,2023,32:83-94. [33]LIU D,NASSERELDINE A,YANG Z,et al.Large languagemodels have intrinsic self-correction ability[J].arXiv:2406.15673,2024. [34]FLESCH R.A new readability yardstick[J].Journal of applied psychology,1948,32(3):221. [35]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[C]//Proceedings of the 31st International Confe-rence on Neural Information Processing Systems.2017:6000-6010. [36]CAI H,XIA R,YU J.Aspect-category-opinion-sentiment quadruple extraction with implicit aspects and opinions[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing.2021:340-350. [37]ZHOU J,YANG H,HE Y,et al.A unified one-step solution for aspect sentiment quad prediction[J].arXiv:2306.04152,2023. [38]XU L,LI H,LU W,et al.Position-aware tagging for aspect sentiment triplet extraction[J].arXiv:2010.02609,2020. [39]PEPER J J,WANG L.Generative aspect-based sentiment analysis with contrastive learning and expressive structure[J].arXiv:2211.07743,2022. [40]ZHANG W,ZHANG X,CUI S,et al.Adaptive data augmentation for aspect sentiment quad prediction[C]//ICASSP 2024-2024 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).IEEE,2024:11176-11180. [41]MA T,WANG Z,ZHOU G.Transition-based Opinion Generation for Aspect-based Sentiment Analysis[C]//Findings of the Association for Computational Linguistics ACL 2024.2024:3078-3087. [42]BROWN T,MANN B,RYDER N,et al.Language models arefew-shot learners[J].Advances in Neural Information Proces-sing Systems,2020,33:1877-1901. [43]TOUVRON H,MARTIN L,STONE K,et al.LLaMA 2:Open foundation and fine-tuned chat models[J].arXiv:2307.09288,2023. |
|