计算机科学 ›› 2025, Vol. 52 ›› Issue (11): 223-229.doi: 10.11896/jsjkx.250500054

• 人工智能 • 上一篇    下一篇

基于审判逻辑的裁判文书生成方法

廖进超, 杨卫哲, 秦永彬, 黄瑞章, 陈艳平, 周裕林   

  1. 公共大数据国家重点实验室(贵州大学) 贵阳 550025
    贵州大学计算机科学与技术学院 贵阳 550025
  • 收稿日期:2025-05-14 修回日期:2025-06-27 出版日期:2025-11-15 发布日期:2025-11-06
  • 通讯作者: 秦永彬(ybqin@gzu.edu.cn)
  • 作者简介:(1762897859@qq.com)
  • 基金资助:
    国家重点研发计划(2023YFC3304500);贵州省科学技术基金重点资助项目(黔科合重大专项字[2024]003);贵州省研究生科研基金(2024YJSKYJJ041)

Method for Generating Judgment Documents Based on Trial Logic

LIAO Jinchao, YANG Weizhe, QIN Yongbin, HUANG Ruizhang, CHEN Yanping, ZHOU Yulin   

  1. State Key Laboratory of Public Big Data,Guizhou University,Guiyang 550025,China
    School of Computer Science and Technology,Guizhou University,Guiyang 550025,China
  • Received:2025-05-14 Revised:2025-06-27 Online:2025-11-15 Published:2025-11-06
  • About author:LIAO Jinchao,born in 1999,postgra-duate.His main research interest is na-tural language processing.
    QIN Yongbin,born in 1980,Ph.D,professoer.His main research interests include big data governance and application,and multi-source data fusion.
  • Supported by:
    National Key Research and Development Program of China(2023YFC3304500),Key Funded Projects of the Science and Technology Foundation Program of Guizhou Province(Qian-Kehe Major Special Project No.[2024] 003) and Department of Education of Guizhou Province(2024YJSKYJJ041).

摘要: 裁判文书自动生成是智慧法院建设中的关键任务之一,旨在提高司法效率与文书质量。由于大模型在司法审判认知上存在盲区,难以理解审理机制和文书规范,导致生成文书在逻辑一致性和结构合理性上存在不足。针对以上问题,提出了一种基于审判逻辑的裁判文书生成方法,利用大语言模型模拟审判推理过程,分阶段生成裁判文书。首先,使用法律要素填充预设模板以描述“基本案情”;其次,对事实与证据进行分析对齐得到“审理事实”;最后,结合知识库检索相关法条生成“法院判决”,并进行拼接生成完整的文书。实验结果表明,相较于基线模型,所提方法在真实案件卷宗数据上的F1值,在ROUGE-1,ROUGE-2和ROUGE-L方面分别提升了6.03,6.56和7.98个百分点,验证了所提方法的有效性。

关键词: 大语言模型, 裁判文书生成, 知识库, 审判逻辑, 智慧法院

Abstract: The automatic generation of judicial documents is one of the key tasks in the construction of smart courts,aiming to enhance judicial efficiency and document quality.However,due to the blind spots of large models in judicial cognition,they struggle to understand the trial mechanism and document norms,resulting in deficiencies in the logical consistency and structural rationality of the generated documents.To address these issues,this paper proposes a method for generating judicial documents based on trial logic,which utilizes large language models to simulate the trial reasoning process and generate documents in stages.Firstly,legal elements are used to fill in the preset template to describe the “basic case facts”.Secondly,the facts and evidence are analyzed and aligned to obtain the “trial facts”.Finally,relevant legal provisions are retrieved from the knowledge base to gene-rate the “court judgment”,and the complete document is assembled.Experimental results show that,compared with the baseline model on real case file data,the proposed method has improved the F1 values of ROUGE-1,ROUGE-2,and ROUGE-L by 6.03,6.56,and 7.98 percentage points respectively,verifying the effectiveness of the proposed method.

Key words: Large language model, Judgment document generation, Knowledge base, Trial logic, Smart court

中图分类号: 

  • TP391.1
[1]WU J.Legal document system reform under the background of intelligent justice [J].South China Sea Jurisprudence,2020,4(3):1-5.
[2]Supreme People's Court.Supreme People's Court Re-leasesKey Data on Judicial Adjudication Work for 2024 [EB/OL].(2024-01-26) [2025-03-01].https://www.chinacourt.org/article/detail/2025/01/id/8686406.shtml.
[3]SUTSKEVER I,VINYALS O,LE Q V.Sequence to Sequence Learning with Neural Networks [C]//Proceedings of the 28th International Conference on Neural Information Processing Systems(NIPS'14).MIT Press,2014:3104-3112.
[4]BROWN T,MANN B,RYDER N,et al.Language models arefew-shot learners[J].Advances in Neural Information Proces-sing Systems,2020,33:1877-1901.
[5]DUAN M Q.Basic Trial Procedure for First-Instance Ordinary Criminal Cases [EB/OL].(2015-11-02) [2025-03-01].https://www.66law.cn/domainblog/74744.aspx.
[6]LEWIS P,PEREZ E,PIKTUS A,et al.Retrieval-augmentedgeneration for knowledge-intensive nlp tasks[J].Advances in Neural Information Processing Systems,2020,33:9459-9474.
[7]DE NOVAIS E M,DIAS T T,PARABONI I.Improved TextGeneration Using N-gram Statistics [C]//12th Ibero-American Conference on Artificial Intelligence(IBERAMIA).Springer-Verlag,2010:316-325.
[8]CHRISTIAN H,AGUS M P,SUHARTONO D.Single document automatic text summarization using term frequen-cy-inverse document frequency(TF-IDF)[J].ComTech:Computer,Mathematics & Engineering Applications,2016,7(4):285-294.
[9]PROUDIAN D,POLLARD C.Parsing Head-Driven PhraseStructure Grammar [C]//Proceedings of the 23rd Annual Mee-ting of the Association for Computational Linguistics.1985:167-171.
[10]HU H J,LIAO M F,MAO W M,et al.Variational Auto-en-coder for Text Generation [C]//Proceedings of the 5th IEEE International Conference on Information Technology and Mechatronics Engineering(ITOEC).2020:595-598.
[11]LIN Z H,GONG Y Y,SHEN Y L,et al.Text Generation with Diffusion Language Models:A Pre-training Approach with Continuous Paragraph Denoise [C]//International Conference on Machine Learning.2023:21051-21064.
[12]WANG Z,HE W,WU H,et al.Chinese Poetry Generation withPlanning Based Neural Network [C]//Proceedings of the 26th International Conference on Computational Linguistics(COLING).2016:1051-1060.
[13]RAHMAN M M,SIDDIQUI F H.Multi-layered attentionalpeephole convolutional LSTM for abstractive text summarization[J].Etri Journal,2021,43(2):288-298.
[14]YANG P C,LI L,LUO F L,et al.Enhancing Topic-to-Essay Generation with External Commonsense Knowledge [C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.2019:2002-2012.
[15]PEI B S,L X,HU K Q,et al.Generation of judicial text abstracts based on knowledge enhancement pre-training model [J].Science Technology and Engineering,2024,24(20):8587-8597.
[16]ALOKLA A,GAD W,NAZIH W,et al.Pseudocode generation from source code using the bart model[J].Mathematics,2022,10(21):3967.
[17]ABADI V N M,GHASEMIAN F.Enhancing Persian text summarization through a three-phase fine-tuning and reinforcement learning approach with the mT5 transformer model[J].Scienti-fic Reports,2025,15(1):80.
[18]ALI S R,DOBBS T D,HUTCHINGS H A,et al.Using ChatGPT to write patient clinic letters[J].The Lancet Digital Health,2023,5(4):e179-e181.
[19]WANG Y,ZHOU Q,LEDO D.StoryVerse:Towards Co-authoring Dynamic Plot with LLM-based Character Simulation via Narrative Planning [C]//Proceedings of the 19th International Conference on the Foundations of Digital Games.2024:1-4.
[20]LI H Z,WANG H Y,SUN X,et al.Prompt-guided Generation of Structured Chest X-ray Report Using a Pre-trained LLM [C]//Proceedings of the IEEE International Conference on Multimedia and Expo(ICME).2024:1-6.
[21]XIAO S T,LIU Z,ZHANG P T,et al.C-Pack:Packed Resources for General Chinese Embeddings [C]//Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval.2024:641-649.
[22]LIN C.Rouge:A Package for Automatic Evaluation of Summaries [C]//Proceedings of the Workshop on Text Summarization Branches Out.2004:74-81.
[23]MIN S,LYU X,HOLTZMAN A,et al.Rethinking the Role ofDemonstrations:What Makes In-Context Learning Work?[C]//Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing.2022:11048-11064.
[24]MIHALCEA R,TARAU P.TextRank:Bringing Order intoText [C]//Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing.2004:404-411.
[25]SHI Y S,MENG J,WANG J.Seq2Seq Model with RNN Attention for Abstractive Summarization [C]//Proceedings of the 2019 International Conference on Artificial Intelligence and Computer Science.2019:348-353.
[26]LEWIS M,LIU Y,GOYAL N,et al.BART:Denoising Se-quence-to-Sequence Pre-training for Natural Language Generation,Translation,and Comprehension [C]//58th Annual Mee-ting of the Association for Computational Linguistics.2020:7871-7880.
[27]SHAO Y F,GENG Z C,LIU Y T,et al.Cpt:A pre-trained unbalanced transformer for both chinese language understanding and generation[J].Science China Information Sciences,2024,67(5):152102.
[28]DU Z X,QIAN Y J,LIU X,et al.GLM:General Language Mo-del Pre-training with Autoregressive Blank Infilling [C]//60th Annual Meeting of the Association for Computational Linguistics.2022:320-335.
[29]GRATTAFIORI A,DUBEY A,JAUHRI A,et al.The llama 3 herd of models[J].arXiv:2407.21783,2024.
[30]RAFFEL C,SHAZEER N,ROBERTS A,et al.Exploring the limits of transfer learning with a unified text-to-text transformer[J].Journal of Machine Learning Research,2020,21(1):5485-5551.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!