计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 241200169-7.doi: 10.11896/jsjkx.241200169

• 人工智能 • 上一篇    下一篇

基于DNA开关电路的逻辑电路模型构建与优化

韦茂端, 吕卉   

  1. 大连大学先进设计与智能计算省部共建教育部重点实验室 辽宁 大连 116622
  • 出版日期:2025-11-15 发布日期:2025-11-10
  • 通讯作者: 吕卉(lvhui@dlu.edu.cn)
  • 作者简介:wmd09871@163.com
  • 基金资助:
    高等学校学科创新引智基地(D23006);国家自然科学基金(62272079);辽宁省人工智能创新发展计划项目(2023JH26/10300025);辽宁省自然科学基金(2024-MS-212);辽宁省教育厅科研项目(LJ222411258005);教育部产学合作协同育人项目(231107099162658);辽宁省研究生教育教学改革研究项目(LNYJG2022493);大连市杰出青年科技人才培养计划项目(2022RJ08);大连市重大基础研究项目(2023JJ11CG002);大连大学科研平台项目(202301YB02);大连大学学科交叉项目(DLUXK-2024-YB-001)

Construction and Optimization of Logic Circuit Models Based on DNA Switching Circuits

WEI Maoduan, LYU Hui   

  1. Key Laboratory of Advanced Design and Intelligent Computing,Ministry of Education,Dalian University,Dalian,Liaoning 116622,China
  • Online:2025-11-15 Published:2025-11-10
  • Supported by:
    111 Project(D23006),National Natural Science Foundation of China(62272079),Artificial Intelligence Innovation Development Plan Project of Liaoning Province(2023JH26/10300025),Natural Science Foundation of Liaoning Province(2024-MS-212),Scientific Research Project of Liaoning Provincial Department of Education(LJ222411258005),Industry-University Cooperative Education Project of the Ministry of Education(231107099162658),State Key Laboratory of Synthetical Automation for Process Industries,Postgraduate Education Reform Project of Liaoning Province(LNYJG2022493),Dalian Outstanding Young Science and Technology Talent Support Program(2022RJ08),Dalian Major Projects of Basic Research(2023JJ11CG002),Scientific Research Platform Project of Dalian University(202301YB02) and Interdisciplinary Project of Dalian University(DLUXK-2024-YB-001).

摘要: 随着DNA计算功能需求的复杂化,对应的DNA逻辑电路模型也愈加错综复杂。针对当前DNA开关电路(DNA Switching Circuits,DSC)建模方法适用性低、网络稳定时间成本高、输出信号单一的问题,提出了“0-1”网络。该网络旨在利用DSC构造逻辑电路的分子模型,允许灵活配置多输出逻辑电路的输出信号数量,扩展了建模适用范围。利用DNA链的可编程性,设计了“中转站”分子结构,以确保电路中电流的顺畅流通,并缩短反应网络的稳定时间。此外,根据DNA链置换原理,构建了DNA惰性电路,利用三输出信号的互斥性保证了输出信号的独立表达,同时缩小了电路规模。最后,结合所提方法,构建了一致性判别电路、二分类网络及特征辨别网络的DSC模型,并通过Visual DSD仿真验证了其有效性。仿真结果表明,所提方法不仅简化了电路结构,还加速了反应网络的稳定。这些基于DSC的逻辑电路模型展示了利用生物分子进行信号处理的潜力。

关键词: DNA计算, DSC, 逻辑电路, 惰性电路, 特征辨别网络

Abstract: As the complexity of DNA computational requirements increases,the corresponding DNA logic circuit models have become more intricate.To address the low applicability of current DNA switching circuits(DSC) modeling methods,the high time cost for network stabilization,and the limited number of output signals,This paper proposed the “0-1” network.This network aimed to construct molecular models of logic circuits using DSC,allowing flexible configuration of the number of output signals in multi-output logic circuits,thus expanding the modeling scope.By leveraging the programmability of DNA strands,a “transit station” molecular structure was designed to ensure smooth current flow within the circuit and reduce the stabilization time of the response network.Additionally,based on the DNA strand displacement principle,a DNA inert circuit was constructed,utilizing the mutual exclusivity of three output signals to ensure their independent expression while reducing the overall circuit size.Finally,combining the proposed method,DSC models for consistency discriminative circuits,binary classification networks,and feature discriminative networks were constructed and verified through Visual DSD simulations.The simulation results show that the proposed method not only simplifies the circuit structure but also accelerates the stabilization of the response network.These DSC-based logic circuit models demonstrate the potential of using biomolecules for signal processing.

Key words: DNA computing, DSC, Logic circuit, Inert circuit, Feature discrimination networks

中图分类号: 

  • TP391
[1]HAN Y J,ZHOU Q L,ZHU W J.Survey on DNA-computing based methods of computation tree logic model checking [J].Computer Science,2019,46(11):25-31.
[2]LI Q T,TONG Z X,CAO Y C,et al.DNAs catalyzing DNA nanoconstruction[J].Chem,2021,7(10):2556-2568.
[3]DEL GROSSO E,FRANCO E,PRINS L J,et al.Dissipative DNAnanotechnology[J].Nature Chemistry,2022,14(6):600-613.
[4]SATZ A L,BRUNSCHWEIGER A,FLANAGAN M E,et al.DNA-encoded chemical libraries[J].Nature Reviews Methods Primers,2022,2(1):3.
[5]NIKITIN M P.Non-complementary strand commutation as afundamental alternative for information processing by DNA and gene regulation[J].Nature Chemistry,2023,15(1):70-82.
[6]XIAO Y J,LV H.Implementation of an ultrasensitive biomole-cular controller for enzymatic reaction processes with delay using DNA strand displacement[J].IEEE Trans on NanoBioscience,2023,22(4):967-977.
[7]LI H S,ISRANI D V,GAGNON K A,et al.Multidimensional control of therapeutic human cell function with synthetic gene circuits[J].Science,2022,378(6625):1227-1234.
[8]LAPTEVA A P,SARRAF N,QIAN L.DNA strand-displacement temporal logic circuits[J].Journal of the American Chemical Society,2022,144(27):12443-12449.
[9]HUANG C,GUO Y F,ZHANG X Y,et al.Design of four-bitsubtracter using excess-3 co-de rules based on DNA domainco-ding [J].Journal of Electronics & Information Technology,2022,44(6):2110-2118.
[10]PETERSEN P,TIKHOMIROV G.Non-complementary computation[J].Nature Chemistry,2023,15(1):9-11.
[11]ZHAO Y B,LIU Y,ZHENG X D,et al.Half adder and half subtractor logic gates based on nicking enzymes[J].Molecular Systems Design & Engineering,2019,4(6):1103-1113.
[12]WU L B,HUANG Y F.Logical reasoning based on DNA strand displacement[J].Computer Science,2022,49(1):259-263.
[13]WU Y R,ZHANG L L,BERRETTI S,et al.Medical image encryption by content-aware DNA computing for secure healthcare[J].IEEE Transaction on Industrial Informatics,2022,19(2):2089-2098.
[14]XIONG X W,ZHU T,ZHU Y,et al.Molecular convolutional neural networks with DNA regulatory circuits[J].Nature Machine Intelligence,2022,4(7):625-635.
[15]LI X,WANG B,LYU H,et al.Constraining DNA sequenceswith a triplet-bases unpaired[J].IEEE Transactions on Nanobioscience,2020,19(2):299-307.
[16]LI Y T,ZHOU P,WANG Z X,et al.Sea anemone-like nanomachine based on DNA strand displacement composed of three boolean logic gates:diversified input for intracellular multitarget detection[J].Analytical Chemistry,2024,96(10):4120-4128.
[17]CHEN B,MA W J,LONG X,et al.Membrane protein and extracellular acid heterogeneity-driven amplified DNA logic gate enables accurate and sensitive identification of cancer cells[J].Analytical Chemistry,2022,94(5):2502-2509.
[18]QIAN L L,WINFREE E.Scaling up digital circuit computation with DNA strand displacement cascades[J].Science,2011,332(6034):1196-1201.
[19]LYU H,XIE N L,LI M Q,et al.DNA-based programmable gate arrays for general-purpose DNA computing[J].Nature,2023,622(7982):292-300.
[20]YANG S,BÖGELS B W A,WANG F,et al.DNA as a universal chemical substrate for computing and data storage[J].Nature Reviews Chemistry,2024,8(3):179-194.
[21]WANG J B,LI Z Z,WILLNER I.Cascaded dissipativeDNAzyme-driven layered networks guide transient replication of coded-strands as gene models[J].Nature Communications,2022,13(1):4414.
[22]WANG F,LV H,LI Q,et al.Implementing digital computing with DNA-based switching circuits[J].Nature Communications,2020,11(1):121.
[23]ZHANG C,LI Z D,LIU J,et al.Synthetic gene circuit-based assay with multilevel switch enables background-free and absolute quantification of circulating tumor DNA[J].Research,2023,6:0217.
[24]CAO M Y,XIONG X W,ZHU Y,et al.DNA computational device-based smart biosensors[J].TrAC Trends in Analytical Chemistry,2023,159:116911.
[25]ZHANG C,ZHENG T T,MA Q,et al.Logical analysis of multiple single-nucleotide-polymorphisms with programmable DNA molecular computation for clinical diagnostics[J].Angewandte Chemie International Edition,2022,61(15):e202117658.
[26]CHEN Z,YIN Z X,CUI J Z,et al.DNA switching circuits based on binary tree[J].IEEE Access,2021,9:94033-94039.
[27]XING C C,ZHENG X D,ZHANG Q.Constructing DNA logic circuits based on the toehold preemption mechanism[J].RSC Advances,2022,12(1):338-345.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!