计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 250300044-7.doi: 10.11896/jsjkx.250300044
罗鑫1, 梁波2
LUO Xin1, LIANG Bo2
摘要: 在射电天文中射频干扰(Radio Frequency Interference,RFI)是指所有会干扰射电望远镜接收到微弱天文信号的现象,对天文信号的观测和研究产生严重影响。目前的抑制方法包括人工标记方法、信号处理方法、机器学习和深度学习方法。因此,提出了一种基于DeepLabV3+改进的深度学习神经网络模型,旨在检测天文数据中的RFI。利用云南天文台观测的真实RFI观测数据对模型进行训练,并充分利用卷积神经网络提取图像特征的能力,以便模型能够更好地学习RFI的特征,从而实现更精确的RFI检测。采用模型对图像进行识别,通过估计每个数据点属于RFI的概率,并使用训练好的模型来判断RFI的存在与否。当某个数据点被模型预测为RFI,将其标记为干扰部分,否则标记为非干扰部分,从而实现对图像中带有RFI部分的标记并抑制。实验结果表明,所提出的方法在F1分数、Accuracy和MIoU方面表现出令人满意的水平。与此同时,将所提出的模型与传统的深度学习模型进行了比较,且进行消融实验,以进一步验证其性能优势。
中图分类号:
| [1]AKERET J,CHANG C,LUCCHI A,et al.Radio frequency interference mitigation using deep convolutional neural networks [J].Astronomy and Computing,2017,18:35-39. [2]AN T.RFI Mitigation in Radio Astronomy:A Review [J].Acta Astronomica Sinica,2017,58:43-52. [3]ZHU S,WANG Z,WANG M,et al.A Study on RFI Detection and Mitigation Techniques [J].Astronomical Research & Technology,2017,14(3):297-306. [4]KOCZ J,BRIGGS F H,REYNOLDS J.Spatial Filtering for Radio Frequency Interference Mitigation [J].The Astronomical Journal,2010,140(6):2086-2094. [5]OFFRINGA A R,DE BRUYN A G,BIELH M,et al.The LOFAR RFI Mitigation Pipeline and Its Applications [J].Monthly Notices of the Royal Astronomical Society,2010,405(1):155-165. [6]FRIDMAN P,BANNIKOV D.A Method for RFI Mitigation in Pulsar Observations [J].Astronomy & Astrophysics,2001,378:327-332. [7]ZHAO J,ZOU X,WENG F.Principal Component Analysis for RFI Mitigation in Microwave Radiometry [J].IEEE Transactions on Geoscience and Remote Sensing,2013,51(9):4830-4839. [8]DAI C,ZUO S F,LIU W,et al.A Comparative Study of RFI Mitigation Algorithms [C]//Astronomical Data Analysis Software and Systems XXVII.2019:71-78. [9]CZECH D,MISHRA A,INGGS M.A Support Vector Machine Approach for RFI Classification in Radio Astronomy [J].Radio Science,2017,52(7):841-852. [10]HE K,GKIOXARI G,DOLLÁR P,et al.Mask R-CNN [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(2):386-397. [11]BADRINARAYANAN V,KENDALL A,CIPOLLA R.Seg-Net:A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2481-2495. [12]REDMON J,DIVVALA S,GIRSHICK R,et al.You Only Look Once:Unified,Real-Time Object Detection [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2016:779-788. [13]AKERET J,CHANG C,LUCCHI A.Refregier:An RFI Mitigation Tool Based on Deep Learning [J].Astronomy and Computing,2017,18:35-39. [14]LIU W,ANGUELOV D,ERHAN D,et al.SSD:Single Shot MultiBox Detector [C]//Computer Vision-ECCV 2016.Springer,2016:21-37. [15]CHEN L C,PAPANDREOU G,SCHROFF F,et al.Rethinking Atrous Convolution for Semantic Image Segmentation [J].ar-Xiv:1706.05587,2017. [16]CHEN L C,ZHU Y,PAPANDREOU G,et al.Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [C]//Proceedings of the European Conference on Computer Vision(ECCV).Springer,2018:801-818. [17]XIA X,XU C,NAN B.U-Net Based RFI Detection in Radio Astronomical Images [C]//2017 2nd International Conference on Image,Vision and Computing(ICIVC).IEEE,2017:124-128. [18]HE K,ZHANG X,REN S,et al.Deep Residual Learning forImage Recognition [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2016:770-778. [19]SIMONYAN K,ZISSERMAN A.Very Deep Convolutional Networks for Large-Scale Image Recognition [J].arXiv:1409.1556,2014. [20]REN S,HE K,GIRSHICK R,et al.Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. [21]CHEN L C,PAPANDREOU G,KOKKINOS I,et al.Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs [J].arXiv:1412.7062,2014. [22]CHEN L C,PAPANDREOU G,KOKKINOS I,et al.DeepLab:Semantic Image Segmentation with Deep Convolutional Nets,Atrous Convolution,and Fully Connected CRFs [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,40(4):834-848. |
|
||