计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 250900008-10.doi: 10.11896/jsjkx.250900008

• 人工智能 • 上一篇    下一篇

基于改进离散黑翅鸢算法的变电站摄像头巡检任务调度方法研究

李海丰1, 陈庆1,2, 黄悦华1,3, 陈曦1,3, 文斌1,2, 吴喜春4   

  1. 1 三峡大学电气与新能源学院 湖北 宜昌 443002
    2 梯级水电站运行与控制湖北省重点实验室(三峡大学) 湖北 宜昌 443002
    3 湖北省微电网工程技术研究中心(三峡大学) 湖北 宜昌 443002
    4 国网湖北省电力有限公司宜昌供电公司 湖北 宜昌 443000
  • 出版日期:2025-11-15 发布日期:2025-11-10
  • 通讯作者: 陈庆(chenqing@ctgu.edu.cn)
  • 作者简介:1448307327@qq.com
  • 基金资助:
    国家自然科学基金(62233006);湖北省自然科学基金(2024AFD409);三峡大学科学基金项目(2024RCKJ022)

Research on Substation Camera Inspection Task Scheduling Method Based on Improved Discrete Black-winged Kite Algorithm

LI Haifeng1, CHEN Qing1,2, HUANG Yuehua1,3, CHEN Xi1,3, WEN Bin1,2, WU Xichun4   

  1. 1 College of Electrical Engineering and New Energy,China Three Gorges University,Yichang,Hubei 443002,China
    2 Hubei Provincial Key Laboratory for Operation and Control of Cascaded Hydropower Station,China Three Gorges University,Yichang,Hubei 443002,China
    3 Hubei Provincial Engineering Technology Research Center for Microgrid,China Three Gorges University,Yichang,Hubei 443002,China
    4 State Grid Hubei Electric Power Co.,Ltd.Yichang Power Supply Company,Yichang,Hubei 443000,China
  • Online:2025-11-15 Published:2025-11-10
  • Supported by:
    National Natural Science Foundation of China(62233006),Hubei Provincial Natural Science Foundation of China(2024AFD409) and Science Foundation of China Three Gorges University(2024RCKJ022).

摘要: 针对变电站摄像头巡检中任务分配不均、灵活性不足,导致摄像头工作效率较低的问题,提出一种基于改进离散黑翅鸢算法的摄像头巡检任务调度方法。首先,考虑摄像头、变电设备和巡检任务之间的复杂映射关系,构建以巡检完工时间、偏转角度和负载均衡为目标的摄像头巡检任务优化调度模型;然后,基于实际巡检特定信息设计启发式联合规则对优化求解的初始种群进行生成,有效解决随机初始化不确定性的问题;进一步地,引入离散差分变异操作和螺旋搜索迁徙机制对黑翅鸢算法进行多策略搜索混合改进,增加算法适应性和搜索能力。场景测试结果表明,提出的方法有效提升了变电站摄像头巡检的效率,可使摄像头在大规模、长周期巡检任务中具有更好的稳定性。

关键词: 摄像头巡检, 巡检任务调度, 改进离散黑翅鸢算法, 启发式联合规则, 多策略搜索

Abstract: Aiming at the problem of uneven task allocation and lack of flexibility in substation camera inspection,which leads to low efficiency of camera work,a camera inspection task scheduling method based on improved discrete black-winged kite algorithm is proposed.Firstly,considering the complex mapping relationship between cameras,substation equipment and inspection tasks,an optimal scheduling model for camera inspection tasks is constructed with inspection completion time,deflection angle and load balancing as the objectives.Then,heuristic joint rules based on the actual inspection-specific information are designed to generate the initial population of the optimization solution,which effectively solves the problem of random initialization uncertainty.Furthermore,the introduction of the discrete difference mutation operation and spiral search migration mechanism are introduced to improve the black-winged kite algorithm with hybrid multi-strategy search to increase the algorithm adaptability and search capability.Scenario test results show that the proposed method effectively improves the efficiency of substation camera inspection,and the method can make the camera have better stability in large-scale and long-cycle inspection tasks.

Key words: Camera inspection, Inspection task scheduling, Improved discrete black-winged kite algorithm, Heuristic joint rule, Multi-strategy search

中图分类号: 

  • TM769
[1]CHEN X,HAN Y F,YAN Y F,et al.A unified algorithm for object tracking and segmentation and its application on intelligent video surveillance for transformer substation[J].Procee-dings of the CSEE,2020,40(23):7578-7587.
[2]JIANG Q,LIU Y D,YAN Y J,et al.Substation inspection robot PTZ camera alignment method for high zoom scenes[J].Proceedings of the CSEE,2024,44(8):3337-3347.
[3]DONG X Y,JI K,ZHU J,et al.A retrofitted ant colony algorithm for inspection robot path planning in UHV substations[J].Power System Protection and Control,2021,49(18):154-160.
[4]QI B,JI M,ZHENG Y P,et al.Application status and development prospect of power internet of things technology in condition assessment of power transmission and transformation equipment[J].High Voltage Engineering,2022,48(8):3012-3031.
[5]PENG M Z,XU Y,HU Y B,et al.Intelligent inspection techno-logy for secondary equipment in substations based on artificial intelligence technology [J].High Voltage Engineering,2023,49(S1):90-96.
[6]TONG J,QI Z H,PU T J,et al.Edge intelligence to power internet of things:concept,architecture,technology and application[J].Proceedings of the CSEE,2024,44(14):5473-5496.
[7]ZHANG C X,LU Z H,LIU X C.Joint inspection technology and its application in a smart substation [J].Power System Protection and Control,2021,49(9):158-164.
[8]ZHANG S J,DU H T,HOU T T.An improved NSGA-Ⅱ algorithm for solving multi-objective dual resource constrained flexible job shop scheduling problem[J].Mechanical Science and Technology for Aerospace Engineering,2023,49(S1):90-96.
[9]PEI H L.Joint scheduling method of machine and handling robot in flexible manufacturing workshop[J].Modern Manufacturing Engineering,2023(3):15-21.
[10]SHI W,ZHOU S,NIU Z,et al.Joint device scheduling and resource allocation for latency constrained wireless federated learning[J].IEEE Transactions on Wireless Communications,2020,20(1):453-467.
[11]ZHOU K,TAN C,WU Y,et al.Research on low-carbon flexible job shop scheduling problem based on improved Grey Wolf Algorithm[J].The Journal of Supercomputing,2024,80(9):12123-12153.
[12]HU R Q,CHENG H,ZHANG Z N.Solving job shop scheduling problem with flexible process sequence based on expression tree model[J].Computer Integrated Manufacturing Systems,2024,30(6):2036-2043.
[13]LU J S,JIN J H,ZHAO W B,et al.Lot streaming hybrid assembly flow shop scheduling on migratory bird algorithm[J].Journal of Zhejiang University(Engineering Science),2022,56(11):2135-2144.
[14]WANG S H,LI Y,LI X Y.An improved whale swarm algorithm for flexible job-shop scheduling problem[J].Journal of Chongqing University,2020,43(1):1-11.
[15]YANG G,YU L.A chimp algorithm based on the foragingstrategy of manta rays and its application[J].Plos One,2024,19(3):e0298230.
[16]ZHANG S J,YANG W Q,GU X S.An improved multi-swarm migrating birds optimization algorithm for hybrid flow shop scheduling[J].Journal of Shanghai Jiao Tong University,2023,57(10):1378-1388.
[17]LEI D M,LIU J Y.Reentrant hybrid flow shop scheduling based on cooperated shuffled frog-leaping algorithm[J].Huazhong Univ.of Sci.& Tech.(Natural Science Edition),2023,51(5):125-130.
[18]WU R R,LI D J,QIN J,et al.System design of an indoor inspection robot driven by a flexible cable in a substation [J].Power System Protection and Control,2021,49(10):89-97.
[19]HALL N G,SRISKANDARAJAH C.A survey of machinescheduling problems with blocking and no-wait in process[J].Operations Research,1996,44(3):510-525.
[20]WANG J,WANG W,HU X,et al.Black-winged kite algorithm:a nature-inspired meta-heuristic for solving benchmark functions and engineering problems[J].Artificial Intelligence Review,2024,57(4):1-53.
[21]ZHANG Z,WANG X,YUE Y.Heuristic optimization algorithm of black-winged kite fused with osprey and its engineering application[J].Biomimetics,2024,9(10):595.
[22]BA Z Y,YUAN Y P,PEI G Q,et al.Hybrid evolutionary algorithm with multi-operation precise joint movement neighborhood structure for job shop scheduling problem[J].Computer Integrated Manufacturing Systems,2024,30(2):537-552.
[23]AMARO D,ROSENKRANZ M,FITZPATRICK N,et al.Acase study of variational quantum algorithms for a job shop scheduling problem[J].EPJ Quantum Technology,2022,9(1):5.
[24]MENG L L,ZHANG B,REN Y P,et al.Hybrid shuffled frog-leaping algorithm for distributed flexible job shop scheduling[J].Journal of Mechanical Engineering,2021,57(17):263-272.
[25]NAWAZ M,ENSCORE J E E,HAM I.A heuristic algorithm for the m-machine,n-job flow-shop sequencing problem[J].Omega,1983,11(1):91-95.
[26]WANG J,LIAO J,ZHOU Y,et al.Differential evolution en-hanced with multiobjective sorting-based mutation operators[J].IEEE Transactions on Cybernetics,2014,44(12):2792-2805.
[27]LI D H,XIONG W Q,WANG Z D.Improving seagull optimization algorithm combined multiple strategies and its application[J].Application Research of Computers,2023,40(5):1360-1367,1374.
[28]DAUZÈRE-PÉRÈS S,DING J,SHEN L,et al.The flexible job shop scheduling problem:A review[J].European Journal of Operational Research,2024,314(2):409-432.
[29]XIONG F L,LI L L.Just-in-time distributed precast scheduling with considering production and transportation costs[J].Computer Integrated Manufacturing Systems,2024,30(12):4386-4405.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!