计算机科学 ›› 2025, Vol. 52 ›› Issue (12): 200-208.doi: 10.11896/jsjkx.250200060
曾丹1, 何星星1, 李莹芳2, 李天瑞3
ZENG Dan1, HE Xingxing1, LI Yingfang2, LI Tianrui3
摘要: 自动推理是人工智能的重要研究领域,推理规则是影响其效率的关键因素。基于矛盾体分离的演绎推理是一种可靠且完备的推理规则,具有多文字、多子句协同和动态演绎等优势。矛盾体构造方法对演绎效率至关重要。基于此,提出基于命题逻辑一类矛盾体结构——多线型标准矛盾体,给出此类矛盾体在不同情况下的复合策略,即利用两个多线型标准矛盾体生成新的标准矛盾体的条件与方法,并对复合性质上的共性结论和特性结论进行区分;指出通过向子句添加特定文字,多线型标准矛盾体可以转换为更多条线的标准矛盾体,并给出此类矛盾体的文字添加策略;设计在命题逻辑中生成多线型标准矛盾体的算法;给出双线型矛盾体及完全标准矛盾体基于一阶逻辑的结构与性质。
中图分类号:
| [1]WITHERELL P,KRISHNAMURTY S,GROSSE I R,et al.Improved knowledge management through first-order logic in engineering design ontologies[J].AI EDAM,2010,24(2):245-257. [2]ROBINSON J A.A machine-Oriented logic based on the resolution principle[J].Journal of the ACM,1965,12(1):23-41. [3]PLAISTED D A.History and prospects for first-order automated deductionC]// International Conference on Automated Deduction.Springer,2015:3-28. [4]VORONKOV A.The anatomy of vampire[J].Journal of Automated Reasoning,1995,15(2):237-265. [5]SCHULZ S.E-a brainiac theorem prover[J].AI Communica-tions,2002,15(2/3):111-126. [6]KOROVIN K,STICKSEL C.iProver-Eq:An instantiation-based theorem prover with equality[C]//Automated Reasoning:5th International Joint Conference.Berlin:Springer,2010:196-202. [7]OTTEN J,BIBEL W.leanCoP:lean connection-based theorem proving[J].Journal of Symbolic Computation,2003,36(1/2):139-161. [8]OTTEN J.Restricting backtracking in connection calculi[J].AI Communications,2010,23:159-182. [9]WERNHARD C,BIBEL W.Investigations into proof structures[J].Journal of Automated Reasoning,2024,68(4):1-70. [10]WERNHARD C.Craig interpolation with clausal first-order ta-bleaux[J].Journal of Automated Reasoning,2021,65(5):647-690. [11]FÄRBER M,KALISZYK C,URBAN J.Machine learning gui-dance for connection tableaux[J].Journal of Automated Reaso-ning,2021,65:287-320. [12]XU Y,LIU J,CHEN S,et al.Contradiction separation based dynamic multi-clause synergized automated deduction[J].Information Sciences,2018,462:93-113. [13]CAO F,XU Y,CHEN S,et al.A contradiction separation dynamic deduction algorithm based on optimized proof search[J].International Journal of Computational Intelligence Systems,2019,12(2):1245-1254. [14]LIU P,CHEN S,LIU J,et al.An efficient contradiction separation based automated deduction algorithm for enhancing reaso-ning capability[J].Knowledge-Based Systems,2023,261:110217. [15]LIU P,XU Y,LIU J,et al.Fully reusing clause deduction algorithm based on standard contradiction separation rule[J].Information Sciences,2023,622:337-356. [16]SUTCLIFFE G,DESHARNAIS M.The 11th IJCAR automated theorem proving system competition-CASC-J11[J].AI Communications,2023,36(2):73-91. [17]BENZMÜLLER C,HEULE M J H,SCHMIDT R A.Automated Reasoning:12th International Joint Conference,IJCAR 2024,Nancy,France,July 3-6,2024,Proceedings,Part I[M].Springer Nature,2024. [18]SUTCLIFFE G,SUTTNER C,KOTTHOFF L,et al.An empi-rical assessment of progress in automated theorem proving[C]//International Joint Conference on Automated Reasoning.Cham:Springer,2024:53-74. [19]TANG L M,BAI M C,HE X X,et al.Complete contradiction and smallest contradiction based on propositional logic[J].Computer Science,2020,47(S2):83-85,105. [20]HE X,LI Y,FENG Y.On structures of regular standard contra-dictions in propositional logic[J].Information Sciences,2022,586:261-278. [21]LI X Y,HE X X,MA X,et al.A new method of generating contradictions in propositional logic[J].Computer-Engineering & Science,2023,45(6):1134-1140. [22]ZANG H,HE X,WANG C,et al.Construction and compounding of a class of regular standard contradictions in propositional logic[J].Computer Science,2024,51(1):295-300. [23]WANG C,HE X,ZANG H.Literal chunk contradiction andclause regular contradiction in propositional logic[J].Computer Science,2024,51(7):272-277. [24]LIU X H.Automatic reasoning based on the reduced method[M].Beijing:Science Press,1994. [25]XU M.Lectures on symbolic logic[M].Wuhan:Wuhan University Press,2008:252-253. |
|
||