计算机科学 ›› 2025, Vol. 52 ›› Issue (5): 220-226.doi: 10.11896/jsjkx.240600125
黄倩, 苏新凯, 李畅, 巫义锐
HUANG Qian, SU Xinkai, LI Chang, WU Yirui
摘要: 由于人体骨架是一个天然存在的拓扑结构,因此图卷积网络(GCNs)被广泛地应用于基于骨骼的人体行为识别。然而,目前的基于GCN的方法只关注关节点对之间的低阶关系,而忽略了潜在的关节点在关节点群中的高阶关系。同时,现有的方法忽略了空间拓扑随时间的动态变化。这些不足影响了模型的表现。为此,利用K-NN计算出相关性高的关节点构成超边,提出了超图构建方法和超边图卷积来动态地学习关节点间的高阶关系。此外,设计了一个从时间和通道角度细化的拓扑图来学习帧级的和通道级的关节点对之间的相关性。最后,开发了一个多角度拓扑细化的超图卷积网络(HyperMTR-GCN)用于骨骼行为识别,其在NTU RGB+D和NTU RGB+D 120数据集上具有显著优势。具体地,所提方法在NTU RGB+D的X-sub基准上比2s-AGCN提高了3.7%,在NTU RGB+D 120的X-sub基准上比2s-AGCN提高了5.7%。
中图分类号:
[1]JIANG Y G,DAI Q,LIU W,et al.Human action recognition in unconstrained videos by explicit motion modeling [J].IEEE Transactions on Image Processing,2015,24(11):3781-3795. [2]GAUR U,ZHU Y,SONG B,et al.A “string of feature graphs” model for recognition of complex activities in natural videos[C]//Proceedings of the 2011 International Conference on Computer Vision.Barcelona,Spain,2011:2595-2602. [3]YAN S J,XIONG Y J,LIN D H.Spatial temporal graph convolutional networks for skeleton-based action recognition[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2018:7444-7452. [4]SHI L,ZHANG Y F,CHENG J,et al.Two-stream adaptivegraph convolutional networks for skeleton-based action recognition[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Long Beach,CA,USA,2019:12018-12027. [5]YE F F,PU S L,ZHONG Q Y,et al.Dynamic gcn:Context-enriched topology learning for skeleton-based action recognition[C]//Proceedings of the 28th ACM International Conference on Multimedia.Seattle,WA,USA,2020:55-63. [6]HAO X K,LI J,GUO Y C,et al.Hypergraph neural networkfor skeleton-based action recognition [J].IEEE Transactions on Image Processing,2021,30:2263-2275. [7]ZHU Y,CHEN W B,GUO G D.Fusing spatiotemporal features and joints for 3D action recognition[C]//Proceedings of the IEEE Confe-rence on Computer Vision and Pattern Recognition Workshops.Portland,OR,USA,2013:486-491. [8]WANG J,NIE X H,XIA Y,et al.Cross-view action modeling,learning,and recognition[C]//Proceedings of the IEEE Confe-rence on Computer Vision and Pattern Recognition(CVPR).2014:2649-2656. [9]HAMMONE D K,VANDERGHEYNST P,GRIBONVAL R.Wavelets on graphs via spectral graph theory[J].Applied and Computational Harmonic Analysis,2011,30(2):129-150. [10]TANG Y S,TIAN Y,LU J W,et al.Deep progressive reinforcement learning for skeleton-based action recognition[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT,USA,2018:5323-5332. [11]SHI L,ZHANG Y,CHENG J,et al.Skeleton-Based Action Re-cognition With Directed Graph Neural Networks[C]//Procee-dings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Long Beach,CA,USA,2019:7904-7913. [12]LI M,CHEN S H,CHEN X,et al.Actional-Structural Graph Convolutional Networks for Skeleton-Based Action Recognition[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Long Beach,CA,USA,2019:3590-3598. [13]CHENG K,ZHANG Y,HE X,et al.Skeleton-Based ActionRecognition with Shift Graph Convolutional Network[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Seattle,WA,USA,2020:180-189. [14]CHEN Y X,ZHANG Z Q,YUAN C F,et al.Channel-wise topology refinement graph convolution for skeleton-based action recognition[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision(ICCV).Montreal,QC,Canada,2021:13339-13348. [15]THAKKAR K,NARAYANAN P J.Part-based graph convolutional network for action recognition[C]//Proceedings of the Brit.Mach.Vis.Conf.(BMVC).2018:270-283. [16]HUANG L,HUANG Y,OUYANG W,et al.Part-Level GraphConvolutional Network for Skeleton-Based Action Recognition[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:11045-11052. [17]LIU S Y,LV P,ZHANG Y Z,et al.Semi-dynamic hypergraph neural network for 3d pose estimation[C]//Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence.Yokohama,Yokohama,Japan,2021. [18]BAI S,ZHANG F H,TORR P H S.Hypergraph convolutionand hypergraph attention[J].Pattern Recognition,2021,110(1):1-8. [19]ZHOU Y X,LI C,CHENG Z Q,et al.Hypergraph Transformer for Skeleton-based Action Recognition [EB/OL].https://api.semanticscholar.org/CorpusID:253581243. [20]SHAHROUDY A,LIU J,NG T T,et al.Ntu rgb+d:A large scale dataset for 3d human activity analysis[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Las Vegas,NV,USA,2016:1010-1019. [21]LIU J,SHAHROUDY A,PEREZ M,et al.Ntu rgb+d 120:A large-scale benchmark for 3d human activity understanding [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(10):2684-2701. [22]LI C,MAO Y C,HUANG Q,et al.Scale-Aware Graph Convolutional Network with Part-Level Refinement for Skeleton-Based Human Action Recognition [J].IEEE Transactions on Circuits and Systems for Video Technology,2024,34(6):4311-4324. [23]ZHU X W,HUANG Q,LI C,et al.Skeleton-Based Action Recognition with Combined Part-Wise Topology Graph Convolutional Networks[C]//Pattern Recognition and Computer Vision(PRCV 2023).2023:43-59. [24]ZHANG P F,LAN C L,ZENG W J,et al.Semantics-guided neural networks for efficient skeleton-based human action recognition[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Seattle,WA,USA,2020:1109-1118. [25]LIU Z Y,ZHANG H W,CHEN Z H,et al.Disentangling andunifying graph convolutions for skeleton-based action recognition[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Seattle,WA,USA,2020:140-149. [26]SONG Y F,ZHANG Z,SHAN C F,et al.Richly activated graph convolutional network for robust skeleton-based action recognition [J].IEEE Transactions on Circuits and Systems for Video Technology,2021,31(5):1915-1925. [27]FENG D,WU Z C,ZHANG J,et al.Multi-scale spatial temporal graph neural network for skeleton-based action recognition [J].IEEE Access,2021,9:58256-58265. [28]WU C,WU X J,KITTLER J.Graph2net:Perceptually-enriched graph learning for skeleton-based action recognition [J].IEEE Transactions on Circuits and Systems for Video Technology,2022,32(4):2120-2132. [29]XU K L,YE F F,ZHONG Q Y,et al.Topology-aware convolutional neural network for efficient skeleton-based action recognition [C]//AAAI Conference on Artificial Intelligence.2021:2866-2874. [30]WEN Y H,GAO L,FU H B,et al.Motifgcns with local andnon-local temporal blocks for skeleton-based action recognition [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,45(2):2009-2023. [31]HUANG Z X,QIN Y S,LIN X,et al.Motiondriven spatial and temporal adaptive high-resolution graph convolutional networks for skeleton-based action recognition [J].IEEE Transactions on Circuits and Systems for Video Technology,2023,33(4):1868-1883. [32]LIN L,ZHANG J,LIU J.Actionlet-Dependent ContrastiveLearning for Unsupervised Skeleton-Based Action Recognition[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Vancouver,BC,Canada,2023:2363-2372. [33]SONG Y F,ZHANG Z,SHAN C F,et al.Constructing stronger and faster baselines for skeleton-based action recognition [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,45(2):1474-1488. [34]HUA Y,WU W,ZHENG C,et al.Part Aware ContrastiveLearning for Self-Supervised Action Recognition[C]//Procee-dings of the Thirty-Second International Joint Conference on Artificial Intelligence.Macao,China,2023:855-863. [35]ZHU Y S,HAN H,YU Z T,et al.Modeling the relative visual tempo for self-supervised skeleton-based action recognition[C]//2023 IEEE/CVF International Conference on Computer Vision(ICCV).Paris,France,2023:13867-13876. |
|