计算机科学 ›› 2025, Vol. 52 ›› Issue (5): 260-269.doi: 10.11896/jsjkx.240300012

• 人工智能 • 上一篇    下一篇

一种融合实体描述和拓扑结构的知识图谱补全方法

韩道军1,2, 李云松2, 张俊涛1,2, 王泽民2   

  1. 1 河南省智能技术与应用工程技术研究中心 河南 开封 475004
    2 河南大学计算机与信息工程学院 河南 开封 475004
  • 收稿日期:2024-03-01 修回日期:2024-08-01 出版日期:2025-05-15 发布日期:2025-05-12
  • 通讯作者: 张俊涛(juntaozhang@henu.edu.cn)
  • 作者简介:(hdj@henu.edu.cn)
  • 基金资助:
    河南省高校青年骨干教师基金(2020GGJS027);国家自然科学基金(42371433,62307012);河南省科技攻关项目(232102211056,242102320160)

Knowledge Graph Completion Method Fusing Entity Descriptions and Topological Structure

HAN Daojun1,2, LI Yunsong2, ZHANG Juntao1,2, WANG Zemin2   

  1. 1 Henan Engineering Research Center of Intelligent Technology and Application,Kaifeng,Henan 475004,China
    2 School of Computer and Information Engineering,Henan University,Kaifeng,Henan 475004,China
  • Received:2024-03-01 Revised:2024-08-01 Online:2025-05-15 Published:2025-05-12
  • About author:HAN Daojun,born in 1979,Ph.D,professor,is a member of CCF(No.28531S).His main research interests include information security,blockchain,and knowledge graph.
    ZHANG Juntao,born in 1989,Ph.D,lecturer,is a member of CCF(No.A1199M).His main research interests include data mining,knowledge graph,big data management and analysis,and fairness.
  • Supported by:
    Foundation of University Young Key Teacher of Henan Province(2020GGJS027),National Natural Science Foundation of China(42371433,62307012) and Scientific and Technological Key Project in Henan Province(232102211056,242102320160).

摘要: 知识图谱补全旨在预测给定三元组中缺失的实体和关系,以增强知识图谱的完整性和质量。现有的知识图谱补全方法通常只考虑三元组自身的结构信息或者是实体单一的附加信息(如实体的文本描述或拓扑结构信息),而忽略了融合多种附加信息来增强实体的特征信息,从而导致现有方法补全缺失实体时性能不佳。针对这个问题,提出一种融合实体文本描述和拓扑结构信息的知识图谱补全方法(FuDS-KGC),用于改善知识图谱补全任务的性能。该方法首先通过Transformer和注意力机制提取实体文本描述中特定于关系的特征表示,以增强实体描述的表示特征信息。然后,构建实体的一阶邻居子图,并通过图注意力网络获得实体的拓扑结构特征。最后,设计一种动态门控融合机制,融合实体的文本描述和拓扑结构特征,以增强实体的综合特征表示。在FB15k-237和WN18RR两个数据集上进行实验,实验结果证明了FuDS-KGC的有效性。

关键词: 知识图谱补全, Transformer, 实体描述, 注意力机制, 拓扑结构

Abstract: Knowledge graph completion aims to predict missing entities and relationships in given triplets to enhance the completeness and quality of the knowledge graph.Existing knowledge graph completion methods typically only consider the structural information of triplets or the individual additional information of entities,such as textual descriptions or topological structure information.This overlooks the fusion of multiple types of additional information to enhance entity feature information,leading to suboptimal performance in completing missing entities.To address this issue,this paper proposes a knowledge graph completion method integrating entity text descriptions and topological structure information,referred to as FuDS-KGC,to enhance the performance of knowledge graph completion tasks.This method first extracts relationship-specific feature representations from entity textual descriptions using Transformer and attention mechanisms to enhance the representation feature information of entity descriptions.Next,it constructs first-order neighbor subgraphs for entities and obtains topological structure features through a graph attention network.Finally,a dynamic gated fusion mechanism is designed to integrate entity textual descriptions and topo-logical structure features to enhance the comprehensive feature representation of entities and overcoming the limitation of existing research focusing on the fusion of singular additional information.Experimental results on FB15k-237 and WN18RR datasets demonstrate the effectiveness of FuDS-KGC.

Key words: Knowledge graph completion, Transformer, Entity descriptions, Attention mechanism, Topological structure

中图分类号: 

  • TP391.1
[1]WANG J B,LAI X L,LIN X Y,et al.Context-aware Temporal Knowledge Graph Completion Based on Relation Constraints[J].Computer Science,2023,50(3):23-33.
[2]KEJRIWAL M,SZEKELY P.Knowledge graphs for socialgood:An entity-centric search engine for the human trafficking domain[J].IEEE Transactions on Big Data,2017,8(3):592-606.
[3]PHAN T,DO P.Building a Vietnamese question answering system based on knowledge graph and distributed CNN[J].Neural Computing and Applications,2021,33(21):14887-14907.
[4]YANG Y,HUANG C,XIA L,et al.Knowledge graph contrastive learning for recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval.2022:1434-1443.
[5]GUO D,TANG D,DUAN N,et al.Dialog-to-action:conversa-tional question answering over a large-scale knowledge base[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems.2018:2946-2955.
[6]ZHANG T C,TIAN X,SUN X H,et al.Overview on Know-ledge Graph Embedding Technology Research[J].Ruan Jian Xue Bao/Journal of Software,2023,34(1):277-311.
[7]XIE R,LIU Z,JIA J,et al.Representation learning of knowledge graphs with entity descriptions[C]//Proceedings of the Thir-tieth AAAI Conference on Artificial Intelligence.2016:2659-2665.
[8]XIAO H,HUANG M,MENG L,et al.SSP:semantic space projection for knowledge graph embedding with text descriptions[C]//Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence.2017:3104-3110.
[9]XU J,QIU X,CHEN K,et al.Knowledge graph representation with jointly structural and textual encoding[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence.2017:1318-1324.
[10]VASHISHTH S,SANYAL S,NITIN V,et al.Composition-based multi-relational graph convolutional networks[C]//ICLR 2020.2020.
[11]NATHANI D,CHAUHAN J,SHARMA C,et al.Learning attention-based embeddings for relation prediction in knowledge graphs[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.2019:4710-4723.
[12]BORDES A,USUNIER N,GARCIA-DURÁN A,et al.Translating embeddings for modeling multi-relational data[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems-Volume 2.2013:2787-2795.
[13]WANG Z,ZHANG J,FENG J,et al.Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence.2014:1112-1119.
[14]LIN H,LIU Y,WANG W,et al.Learning Entity and Relation Embeddings for Knowledge Resolution[J].Procedia Computer Science,2017,108:345-354.
[15]JI G,HE S,XU L,et al.Knowledge graph embedding via dy-namic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing(volume 1:Long papers).2015:687-696.
[16]SUN Z,DENG Z H,NIE J Y,et al.Rotate:Knowledge graph embedding by relational rotation in complex space[J].arXiv:1902.10197,2019.
[17]LI J,SU X.TransERR:Translation-based Knowledge GraphCompletion via Efficient Relation Rotation[J].arXiv:2023.14580,2023.
[18]NICKEL M,TRESP V,KRIEGEL H P.A three-way model for collective learning on multi-relational data[C]//ICML.2011:3104482-3104584.
[19]YANG B,YIH W,HE X,et al.Embedding entities and relations for learning and inference in knowledge bases[C]//Proceedings of the International Conference on Learning Representations(ICLR).2015.
[20]TROUILLON T,DANCE C R,GAUSSIER É,et al.Knowledge graph completion via complex tensor factorization[J].Journal of Machine Learning Research,2017,18(130):1-38.
[21]ZHANG Z,CAI J,WANG J.Duality-induced regularizer for tensor factorization based knowledge graph completion[J].Advances in Neural Information Processing Systems,2021,33:21604-21615.
[22]CHEN Y H,TAN C Y,CHEN W L,et al.Chinese knowledge Graph Complemnetion with Multiple Embeddings[J].Journal of Chinese information processing,2023,37(1):54-63.
[23]DETTMERS T,MINERVINI P,STENETORP P,et al.Convolutional 2D knowledge graph embeddings[C]//Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence.2018:1811-1818.
[24]NGUYEN D Q,NGUYEN T D,NGUYEN D Q,et al.A novel embedding model for knowledge base completion based on con-volutional neural network[C]//Proceedings of the 2018 Confe-rence of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2018:327-333.
[25]ZOU C L,AN J M,LI G Y.Knowledge graphentity type completion based on neighborhood aggregation and CNN[J].Computer Engineering,2023,49(3):134-141.
[26]SOCHER R,CHEN D,MANNING C D,et al.Reasoning with neural tensor networks for knowledge base completion[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems-Volume 1.2013:926-934.
[27]WANG Z,ZHANG J,FENG J,et al.Knowledge graph and text jointly embedding[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing(EMNLP).2014:1591-1601.
[28]DAI S,LIANG Y,LIU S,et al.Learning entity and relation embeddings with entity description for knowledge graph completion[C]//2018 2nd International Conference on Artificial Intelligence:Technologies and Applications(ICAITA 2018).Atlantis Press,2018:194-197.
[29]GU J,WANG Z,KUEN J,et al.Recent advances in convolutionalneural networks[J].Pattern recognition,2018,77:354-377.
[30]ZHONG H,ZHANG J,WANG Z,et al.Aligning knowledge and text embeddings by entity descriptions[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Languag Processing.2015:267-272.
[31]XIAO H,HUANG M,MENG L,et al.SSP:semantic space projection for knowledge graph embedding with text descriptions[C]//Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence.2017:3104-3110.
[32]YU C,ZHANG Z,AN L,et al.A knowledge graph completion model integrating entity description and network structure[J].Aslib Journal of Information Management,2023,75(3):500-522.
[33]SCHLICHTKRULL M,KIPF T N,BLOEM P,et al.Modeling relational data with graph convolutional networks[C]//The Semantic Web:15th International Conference,ESWC 2018,Heraklion,Crete,Greece,June 3-7,2018,proceedings 15.Springer International Publishing,2018:593-607.
[34]ZHANG X,ZHANG C,GUO J,et al.Graph attention network with dynamic representation of relations for knowledge graph completion[J].Expert Systems with Applications,2023,219:119616.
[35]BALAZEVIC I,ALLEN C,HOSPEDALES T.TuckER:Tensor Factorization for Knowledge Graph Completion[C]//2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing.Association for Computational Linguistics,2019:5184-5193.
[36]YAO L,MAO C,LUO Y.KG-BERT:BERT for knowledgegraph completion[J].arXiv:1909.03193,2019.
[37]WANG B,SHEN T,LONG G,et al.Structure-augmented text representation learning for efficient knowledge graph completion[C]//Proceedings of the Web Conference 2021.2021:1737-1748.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!