计算机科学 ›› 2025, Vol. 52 ›› Issue (5): 322-329.doi: 10.11896/jsjkx.240700006
孙月玥1, 范丽敏2
SUN Yueyue1, FAN Limin2
摘要: 在信息安全领域,随机性检测在确保密码系统的安全性中起着至关重要的作用。这些测试的稳定性和可靠性直接影响密码系统的整体安全性。检测过程中的误差问题一直是学术界和工业界关注的焦点,特别是在处理大规模样本时,误差的累积更容易导致随机性检测的可靠性降低。因此,研究如何提高随机性检测的准确性和可靠性具有重要意义。GM/T 0005-2021标准中包含了9个具有可变参数的检测项目。针对大样本二元数据的随机性检测问题,根据其特点进行分类,并进行误差量化分析。当待检二元序列比特长度为1×108时,GM/T 0005-2021标准中的检测参数建议基本合理。对于Maurer通用统计检测,子序列长度取6时p值误差上界为0.001 492 8,相较于GM/T 0005-2021中建议的参数表现出更高的准确性。对于线性复杂度检测,更小的子序列长度同样会导致更小的误差。随着样本长度的增加,扩展研究了1×109时的参数选择,分析了不同样本长度和参数下的误差,并给出了样本长度为1×109时的检测参数建议。
中图分类号:
[1]BASSHAM L E,RUKHIN A L,SOTO J,et al.A Statistical Test Suite for Randomand Pseudorandom Number Generators for Cryptographic Applications:Technical Report [EB/OL].https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=906762. [2]ILLMANN W,SCHINDLER W.A Proposal for:Functionality Classes for Random Number Generators[EB/OL].https://www.bsi.bund.de/EN/Home/home_node.htm. [3]MARSAGLIA G.The Marsaglia Random Number Cdrom Including the Diehard Battery of Tests of Randomness[EB/OL].https://ani.stat.fsu.edu/diehard/. [4]L′ECUYER P,SIMARD R.Testu01:Ac Library for Empirical Testing of Random Number Generators[J].ACM Transactions on Mathematical Software(TOMS),2007,33(4):1-40. [5]随机性检测规范:GM/T 0005-2021 [S].北京:国家密码管理局,2021. [6]MAO C,SONG Y,CHEN J.A Lightweight Adaptive Random Testing Method for Deep Learning Systems[J].Software:Practice and Experience,2023,53(11):2271-2295. [7]DEMIRHAN H,BITIRIM N.Statistical Testing of Crypto-graphic Randomness[J].İstatistikçiler Dergisi:İstatistik ve Aktüerya,2016,9(1):1-11. [8]ZHU S,MA Y,LIN J,et al.More Powerful and Reliable Se-cond-Level Statistical Randomness Tests for NIST SP 800-22[C]//Advances in Cryptology-ASIACRYPT 2016:22nd International Conference on the Theory and Application of Cryptology and Information Security,Hanoi,Vietnam,December 4-8,2016,Proceedings,Part I 22.Berlin Heidelberg:Springer,2016:307-329. [9]CHEN D,CHEN H,FAN L,et al.Error Analysis of NIST SP 800-22 Test Suite[J].IEEE Transactions on Information Forensics and Security,2023,18:3745-3759. [10]PARESCHI F,ROVATTI R,SETTI G.OnStatistical Tests for Randomness Included in the NIST SP 800-22 Test Suite and Based on the Binomial Distribution[J].IEEE Transactions on Information Forensics and Security,2012,7(2):491-505. [11]CHEN L H Y,GOLDSTEIN L,SHAO Q M.Normal Approximation by Stein's Method[M].Berlin Heidelberg:Springer,2010. [12]LUENGO E A,OLIVARES B A,VILLALBA L J G,et al.Further Analysis of the Statistical Independence of the NIST SP 800-22 Randomness Tests[J].Applied Mathematics and Computation,2023,459:128222. [13]RUKHIN A L.Approximate Entropyfor Testing Randomness[J].Journal of Applied Probability,2000,37(1):88-100. [14]IWASAKI A,UMENO K.Randomness Test to Solve Discrete Fourier Transform Test Problems[J].IEICE Transactions on Fundamentals of Electronics,Communications and Computer Sciences,2018,101(8):1204-1214. [15]IWASAKI A.Deriving the Variance of the Discrete FourierTransform Test Using Parseval's Theorem[J].IEEE Transactions on Information Theory,2019,66(2):1164-1170. [16]HARAMOTO H.Study on Upper Limit of Sample Size for a Two-Level Test in NIST SP800-22[J].Japan Journal of Industrial and Applied Mathematics,2021,38(1):193-209. [17]AKCENGIZ Z.A New Lightweight Statistical Randomness Test Suite and Its Evaluationby Comparison with Other Test Suites[D].Ankara:Middle East Technical University,2021. [18]AKCENGIZ Z,ASLAN M,DOǦANAKSOY A,et al.LS-14Test Suite for Long Sequences[J].Hacettepe Journal of Mathematics and Statistics,2024,53(1):230-250. [19]CHEN M,CHEN H,FAN L,et al.A New Discrete FourierTransform Randomness Test[J].Science China Information Sciences,2019,62:1-16. [20]HIKIMA Y,IWASAKI A,UMENO K.The Reference Distributions of Maurer's Universal Statistical Test and Its Improved Tests[J].IEEE Transactions on Information Theory,2021,68(4):2674-2683. [21]MENG C,CAI M,YANG Y,et al.Generation of True Quantum Random Numbers with on-Demand Probability Distributions via Single-Photon Quantum Walks[J].Optics Express,2024,32(11):20207-20217. [22]IL′YA S T.Refinement of the Upper Bounds of the Constants in Lyapunov's Theorem[J].Russian Mathematical Surveys,2010,65(3):586. [23]PEARSON K X.On the Criterion That a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is Such That it Can Be Reasonably Supposed to Have Arisen from Random Sampling[J].The London,Edinburgh,and Dublin Philosophical Magazine and Journal of Science,1900,50(302):157-175. [24]CORON J S,NACCACHE D.An Accurate Evaluation of Mau-rer's Universal Test[C]//International Workshop on Selected Areas in Cryptography.Berlin,Heidelberg:Springer Berlin Heidelberg,1998:57-71. |
|