计算机科学 ›› 2025, Vol. 52 ›› Issue (6): 129-138.doi: 10.11896/jsjkx.240500092
谭淇尹1, 于炯1,2, 陈子歆1
TAN Qiyin1, YU Jiong1,2, CHEN Zixin1
摘要: 离群点检测(Outlier Detection)是通过识别数据集中不同于大多数样本的少量个体来获取数据的整体健康状态与异常信息。目前,在处理欧氏结构数据集时,大部分检测算法侧重于将数据视为独立的个体,却忽视了数据实例之间的相关性。这种信息偏向性导致了一些可能位于正常数据区域内的潜在的离群值难以被有效检测出来。针对上述问题,提出了一种基于自适应邻居的图自动编码器的深度联合表示学习算法ANGAE(Adaptive Neighbor Graph Autoencoder)。该算法从图生成的角度构建图来捕捉数据点之间的关系,并利用结构和属性自动编码器学习数据的潜在表示。ANGAE引入了自适应邻居构图机制,以动态更新图结构,确保在模型训练过程中对不准确的图结构进行调整和改进。通过融合结构嵌入和属性嵌入,ANGAE实现了网络结构和节点属性之间的有效交互。实验结果表明,所提出的方法在11个数据集上表现优异,在保持高精度的同时展现了很好的鲁棒性,其有效性得到了充分证明。
中图分类号:
[1]PANG G,SHEN C,CAO L,et al.Deep Learning for Anomaly Detection:A Review[J].ACM Computing Surveys,2021,54(2):38:1-38:38. [2]BAO Y,KE B,LI B,et al.Detecting Accounting Fraud in Publicly Traded U.S.Firms Using a Machine Learning Approach[J].Journal of Accounting Research,2020,58(1):199-235. [3]AL-HASHEDI K G,MAGALINGAM P.Financial fraud detection applying data mining techniques:A comprehensive review from 2009 to 2019[J].Computer Science Review,2021,40:100402. [4]SAHOO S R,GUPTA B B.Multiple features based approach for automatic fake news detection on social networks using deep learning[J].Applied Soft Computing,2021,100:106983. [5]ZHANG X,GHORBANI A A.An overview of online fakenews:Characterization,detection,and discussion[J].Information Processing & Management,2020,57(2):102025. [6]SAFIAN A,WU N,LIANG X.Development of an embedded piezoelectric transducer for bearing fault detection[J].Mechanical Systems and Signal Processing,2023,188:109987. [7]YAKHNI M F,CAUET S,SAKOUT A,et al.Variable speedinduction motors' fault detection based on transient motor current signatures analysis:A review[J].Mechanical Systems and Signal Processing,2023,184:109737. [8]LI C T,TSAI Y C,CHEN C Y,et al.Graph Neural Networks for Tabular Data Learning:A Survey with Taxonomy and Directions[J].arXiv:2401.02143,2024. [9]YANG X,LATECKI L J,POKRAJAC D.Outlier Detectionwith Globally Optimal Exemplar-Based GMM[M]//Procee-dings of the 2009 SIAM International Conference on Data Mining(SDM).Society for Industrial and Applied Mathematics,2009:145-154. [10]BREUNIG M M,KRIEGEL H P,NG R T,et al.LOF:identifying density-based local outliers[C]//Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data.New York:Association for Computing Machinery,2000:93-104. [11]JIANG S Y,AN Q B.Clustering-Based Outlier Detection Me-thod[C]//2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery.2008:429-433. [12]PAPADIMITRIOU S,KITAGAWA H,GIBBONS P B,et al.LOCI:fast outlier detection using the local correlation integral[C]//Proceedings 19th International Conference on Data Engineering(Cat.No.03CH37405).2003:315-326. [13]IKOTUN A M,EZUGWU A E,ABUALIGAH L,et al.K-means clustering algorithms:A comprehensive review,variants analysis,and advances in the era of big data[J].Information Sciences,2023,622:178-210. [14]DENG D.DBSCAN Clustering Algorithm Based on Density[C]//2020 7th International Forum on Electrical Engineering and Automation(IFEEA).2020:949-953. [15]CERVANTES J,GARCIA-LAMONT F,RODRÍGUEZ-MAZAHUA L,et al.A comprehensive survey on support vector machine classification:Applications,challenges and trends[J].Neurocomputing,2020,408:189-215. [16]LIU F T,TING K M,ZHOU Z H.Isolation Forest[C]//2008 Eighth IEEE International Conference on Data Mining.2008:413-422. [17]PANG G,CAO L,AGGARWAL C.Deep Learning for Anomaly Detection:Challenges,Methods,and Opportunities[C]//Proceedings of the 14th ACM International Conference on Web Search and Data Mining.New York:Association for Computing Machinery,2021:1127-1130. [18]GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Ge-nerative adversarial networks[J].Communications of the ACM,2020,63(11):139-144. [19]GIRIN L,LEGLAIVE S,BIE X,et al.Dynamical VariationalAutoencoders:A Comprehensive Review[J].Foundations and Trends© in Machine Learning,2021,15(1/2):1-175. [20]LIU Y,LI Z,ZHOU C,et al.Generative Adversarial ActiveLearning for Unsupervised Outlier Detection[J].IEEE Transactions on Knowledge and Data Engineering,2020,32(8):1517-1528. [21]DU X,CHEN J,YU J,et al.Generative adversarial nets for unsupervised outlier detection[J].Expert Systems with Applications,2024,236:121161. [22]WU Z,PAN S,CHEN F,et al.A Comprehensive Survey onGraph Neural Networks[J].IEEE Transactions on Neural Networks and Learning Systems,2021,32(1):4-24. [23]KHAN W,AL E.An Exhaustive Review on State-of-the-artTechniques for Anomaly Detection on Attributed Networks[J].Turkish Journal of Computer and Mathematics Education,2021,12(10):6707-6722. [24]DING K,LI J,LIU H.Interactive Anomaly Detection on Attributed Networks[C]//Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining.New York:Association for Computing Machinery,2019:357-365. [25]DING K,LI J,BHANUSHALI R,et al.Deep Anomaly Detection on Attributed Networks[C]//Proceedings of the 2019 SIAM International Conference on Data Mining(SDM).Society for Industrial and Applied Mathematics,2019:594-602. [26]LI Y,HUANG X,LI J,et al.SpecAE:Spectral AutoEncoder for Anomaly Detection in Attributed Networks[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management.New York:Association for Computing Machinery,2019:2233-2236. [27]NIE F,WANG X,HUANG H.Clustering and projected clustering with adaptive neighbors[C]//Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining.New York:Association for Computing Machinery,2014:977-986. [28]LONSO-GONZÁLEZ M,DÍAZ V G,PÉREZ B L,et al.Bearing Fault Diagnosis With Envelope Analysis and Machine Learning Approaches Using CWRU Dataset[J].IEEE Access,2023,11:57796-57805. [29]AN S,HU X,HUANG H,et al.ADBench:Anomaly Detection Benchmark[J].Advances in Neural Information Processing Systems,2022,35:32142-32159. [30]ODGE A,HOOI B,NG S K,et al.LUNAR:Unifying Local Outlier Detection Methods via Graph Neural Networks[J].Procee-dings of the AAAI Conference on Artificial Intelligence,2022,36(6):6737-6745. [31]YUAN X,ZHOU N,YU S,et al.Higher-order Structure Based Anomaly Detection on Attributed Networks[C]//2021 IEEE International Conference on Big Data(Big Data).2021:2691-2700. [32]ZHAO Y,NASRULLAH Z,LI Z.PyOD:A Python Toolbox for Scalable Outlier Detection[J].Journal of Machine Learning Research,2019,20(96):1-7. [33]LIU K,DOU Y,DING X,et al.PyGOD:A Python Library for Graph Outlier Detection[J].Journal of Machine Learning Research,2024,25(141):1-9. |
|