计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240500119-9.doi: 10.11896/jsjkx.240500119

• 智能医学工程 • 上一篇    下一篇

基于三维CT片的下肢骨解剖结构分割算法的研究

石辛诚, 王宝会, 于利韬, 杜辉   

  1. 北京航空航天大学软件学院 北京 100191
  • 出版日期:2025-06-16 发布日期:2025-06-12
  • 通讯作者: 王宝会(wangbh@buaa.edu.cn)
  • 作者简介:(2041341499@qq.com)

Study on Segmentation Algorithm of Lower Limb Bone Anatomical Structure Based on 3D CTImages

SHI Xincheng, WANG Baohui, YU Litao, DU Hui   

  1. School of Software,Beihang University,Beijing 100191,China
  • Online:2025-06-16 Published:2025-06-12
  • About author:SHI Xincheng,born in 2000,postgraduate.His main research interests include software engineering and computer vision,etc.
    WANG Baohui,born in 1973,senior engineer,master supervisor.His main research interests include network security,big data,artificial intelligence,etc.

摘要: 在医学图像分割领域,下肢骨CT影像的噪声、伪影、对比度低等问题对图像分割的性能和效果提出了更高的要求。针对这一需求场景,提出了基于U-Net卷积神经网络模型,结合三维CT影像输入数据的特点,对分割算法进行针对性改进的图像分割模型,提高了分割的准确度。文中生成的模型基于U-Net卷积神经网络,通过多层卷积池化聚合,结合注意力机制和连续切片间的特征融合,充分挖掘影像中的特征和结构信息,实现了端到端的影像分割方法。基于积水潭医院下肢骨CT影像数据集进行验证,实验结果表明,该模型的平均交并比达到了84.959%,而其他模型的对应数值分别为78.604%(U-Net),80.481%(Nested U-Net),79.877%(Attention U-net),相比其他模型有显著的提高。

关键词: 卷积神经网络, 图像分割, U-Net, 医学影像处理, 特征融合, 注意力机制

Abstract: There are higher demands for the performance and effectiveness of segmentation algorithms in the domain of medical image segmentation,due to disturbances suchas noise,artifacts,and low contrast in lower limb bone CT images.In response to this demand,a tailored improvement of the image segmentation model based on the U-Net convolutional neural network model and the characteristics of three-dimensional CT image input data is proposed,improving the accuracy of segmentation.The proposed model,which is based on the U-Net module,is employing multiple layers of convolutional pooling aggregation,combined with attention mechanisms and feature fusion between consecutive slices.This approach can fully explore the features and structural information in the image,achieving an end-to-end image segmentation method.The paper validates the model using a dataset of lower limb bone CT images from Xishan Hospital.Experimental results demonstrate that the average intersection over union(IoU) of the proposed model reaches 84.959%,while the corresponding value of other models is 78.604%(U-Net),80.481%(Nested U-Net),and 79.877%(Attention U-Net),respectively.The proposed model shows significant improvements compared to other models.

Key words: Convolutional neural network, Image segmentation, U-Net, Medical image processing, Feature fusion, Attention mecha-nisms

中图分类号: 

  • TP183
[1]OLIVEIRA D A,FEITOSA R Q,CORREIA M M.Segmentation of liver,its vessels and lesions from CT images for surgical planning [J].Biomedical Engineering Online,2011,10:30.
[2]SEO K S,KIM H B,PARK T,et al.Automatic liver segmentation of contrast enhanced CT images based on histogram processing [C]//WANG L,CHEN K,ONG Y S.Advances in Natural Computation.Berlin:Springer,2005:1027-1030.
[3]KENJI S,RYAN K,MARK L,et al.Computer-Aided Measurement of Liver Volumesin CT by Means of Geodesic Active Contour Segmentation Coupled with Level-Set Algorithms [J].Medical Physics,2010,37:2159-2166.
[4]RONNEBERGER O,FISCHER P,BROX T.U-Net:Convolu-tional networks for biomedical image segmentation [C]//Springer International Publishing,2015:234-241.
[5]MILLETARI F,NAVAB N,AHMADI S A.V-Net:Fully convolutional neural networks for volumetric medical image segmentation [C]//2016 4th International Conference on 3D Vision(3DV).Stanford,25-28 October 2016:565-571.
[6]ZHOU Z,RAHMAN SIDDIQUEE M M,TAJBAKHSH N,et al.UNet++:A nested U-Net architecture for medical image segmentation [C]//Stoyanov D,et al.Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support.Springer,2018:3-11.
[7]OKTAY O,SCHLEMPER J,FOLGOC L L,et al.Attention U-Net:Learning where to look for the pancreas [J].arXiv:1804.03999,2018.
[8]ALOM M Z,YAKOPCIC C,TAHA T M,et al.Nuclei segmentation with recurrent residual convolutional neural networks based U-Net(R2U-Net) [C]//NAECON 2018-IEEE National Aerospace and Electronics Conference.Dayton.OH,2018:228-233.
[9]CHEN H,DOU Q,YU L,et al.VoxResNet:Deep voxelwise residual networks for brain segmentation from 3D MR images [J].NeuroImage,2018,170:446-455.
[10]SCHLEMPER J,OKTAY O,SCHAAP M,et al.Attention gated networks:Learning to leverage salient regions in medical images [J].Medical Image Analysis,2019,53:197-207.
[11]HUANG G,LIU Z,VAN DER MAATEN L,et al.Densely connected convolutional networks [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:4700-4708.
[12]LITJENS G,TOTH R,VAN DE VEN W,et al.Evaluation of prostate segmentation algorithms for MRI:The PROMISE12 challenge [J].Medical Image Analysis,2014,18(2):359-373.
[13]WANG H,LI T,ZHUANG Z,et al.Early stopping for deep image prior [J].arXiv:1901.09335,2021.
[14]WANG C,HE Y,LIU Y,et al.ScleraSegNet:An improved U-net model with attention for accurate sclera segmentation [C]//Proceedings of the International Conference on Biometrics,2019:1-8.
[15]CHEN L C,ZHU Y,PAPANDREOU G,et al.Encoder-decoder with atrous separable convolution for semantic image segmentation [C]//Ferrari V,Hebert M,Sminchisescu C,Weiss Y.Computer Vision—ECCV 2018.Cham:Springer,2018:833-851.
[16]JIN Q G,MENG Z P,PHAM T D,et al.DUNet:A Deformable Network for Retinal Vessel Segmentation [J].Knowledge-Based Systems,2019,178:149-162.
[17]ZHANG Z Z,GAO J Y,ZHAO D.MIFNet:A Gastric Cancer Pathology Image Segmentation Method Based on Multi-Scale Input and Feature Fusion [J].Journal of Computer Applications,2019,39(z2):107-113.
[18]JIN Q G,MENG Z P,PHAM T D,et al.DUNet:A Deformable Network for Retinal Vessel Segmentation [J].Knowledge-Based Systems,2019,178:149-162.
[19]DAI J,QI H,XIONG Y,et al.Deformable ConvolutionalNetworks [C]//Proceedings of the International Conference on Computer Vision.2017:764-773.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!