计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240700178-8.doi: 10.11896/jsjkx.240700178

• 大数据&数据科学 • 上一篇    下一篇

基于时空图注意力网络的云平台负载数据预测方法

李英健1, 王永生1, 刘晓君2, 任渊3   

  1. 1 内蒙古工业大学数据科学与应用学院 呼和浩特 010080
    2 内蒙古自治区呼和浩特市武川县水务局 内蒙古 武川 011700
    3 内蒙古自治区政府办公厅综合保障中心 呼和浩特 010051
  • 收稿日期:2024-07-26 修回日期:2024-09-10 出版日期:2025-06-16 发布日期:2025-06-12
  • 通讯作者: 王永生(wangys@imut.edu.cn)
  • 作者简介:(20221800738@imut.edu.cn)
  • 基金资助:
    国家自然科学基金(62366039);内蒙古自治区自然科学基金(2021LHMS06001);内蒙古自治区科技计划项目(2023YFSH0066);呼和浩特市科技重大专项(2022-高重-2)

Cloud Platform Load Data Forecasting Method Based on Spatiotemporal Graph AttentionNetwork

LI Yingjian1, WANG Yongsheng1, LIU Xiaojun2, REN Yuan3   

  1. 1 School of Data Science and Application,Inner Mongolia University of Technology,Hohhot 010080,China
    2 Inner Mongolia Autonomous Region Wuchuan County Water Bureau,Wuchuan,Inner Mongolia 011700,China
    3 Comprehensive Support Center of Inner Mongolia Autonomous Region Government Office,Huhhot 010051,China
  • Received:2024-07-26 Revised:2024-09-10 Online:2025-06-16 Published:2025-06-12
  • About author:LI Yingjian,born in 1999,master degree.His main research interests include intelligent operations and maintenance.
    WANG Yongsheng,born in 1976,Ph.D,professor,master’s supervisor.His mainresearch interests include artificial intelligence and energy security.
  • Supported by:
    National Natural Science Foundation of China(62366039),Inner Mongolia Natural Science Foundation of China(2021LHMS06001),Science and Technology Program of Inner Mongolia,China(2023YFSH0066) and Science and Technology Major Program of Hohhot City,China(2022-Advanced Key-2).

摘要: 实时预测云平台监控收集的负载数据,有助于云运维中及早获取系统未来的性能趋势。但由于负载数据通常不具备明显的周期性或规律性,存在较多的噪声干扰,现有方法在特征学习规划上存在不足,需要依赖其他负载特征并且难以捕捉负载趋势的动量。为实现精准高效的负载数据预测,提出了一种基于时空图注意力网络的云平台负载数据预测方法。首先,运用改进经验小波变换对负载数据做时频域变换,降低噪声干扰并得到有效分解后的模态特征;为了提高模型处理尖峰和非周期性特征的能力,利用金融技术指标设计适合负载数据特性的关键性能因子;然后,将模态特征和关键性能因子与原始序列进行特征重构,构建图学习层;最后,利用图注意力网络动态捕获负载序列和特征之间的关系,并通过双向长短期记忆网络关注时间依赖信息。使用亚马逊和阿里云等负载数据集进行实验验证,结果表明,在4个数据集上,RMSE相比最优对比模型分别降低了13.44%,36.90%,7.41%和14.93%。

关键词: 云平台, 负载预测, 经验小波变换, 金融技术指标, 图注意力网络, 双向长短期记忆网络

Abstract: Real-time prediction of load data collected from cloud platform monitoring helps in early identification of future system performance trends in cloud operations.However,load data typically lacks of clear periodicity or regularity and contains significant noise interference.Existing methods suffer from deficiencies in feature learning planning,relying on other load features and struggling to capture the momentum of load trends.To achieve accurate and efficient load data prediction,this paper proposes a cloud platform load data prediction method based on a spatiotemporal graph attention network.Firstly,an improved empirical wavelet transform is applied to perform time-frequency domain transformation on the load data,reducing noise interference and obtaining effectively decomposed modal features.To enhance the model’s capability in handling spikes and non-periodic characte-ristics,key performance factors tailored to the load data characteristics are designed using financial technical indicators.Additionally,modal features and key performance factors are reconstructed with the original sequence to build a graph learning layer.The graph attention network is then used to dynamically capture the relationships between the load sequences and features,and a bidirectional long short-term memory network focuses on temporal dependency information.Experimental validation is conducted on load datasets from Amazon and Alibaba Cloud,and the results show that,compared to the best baseline model,RMSE is reduced by 13.44%,36.90%,7.41%,and 14.93% respectively on four datasets.

Key words: Cloud platform, Load forecasting, Empirical wavelet transform, Financial technical indicators, Graph attention network, BiLSTM network

中图分类号: 

  • TP391
[1]BAO H Y,YIN K L,CAO L,et al.AIOps in Practice:Status Quo and Standardization[J].Journal of Software,2023,34(9):4069-4095.
[2]DING Y,SANG N,LI X Y,et al.Prediction method of capacity data in telecom industry based on recurrent neural network[J].Journal of Computer Applications,2021,41(8):2373-2378.
[3]WANG E X,WANG X H,ZHANG K,et al.Cloud computing load forecasting algorithm based on dual attention mechanism[J].Computer Engineering,2023,49(11):40-48.
[4]CHEN L,WANG W,YANG Y,et al.A novel robust prediction algorithm based on REMD-MWNN for AIOps[J].Knowledge-Based Systems,2021,228:107038.
[5]SHARIFIAN S,BARATI M.An ensemble multiscale wavelet-GARCH hybrid SVR algorithm for mobile cloud computing workload prediction[J].International Journal of Machine Lear-ning and Cybernetics,2019,10:3285-3300.
[6]XIE T L,DENG L,YOU W L,et al.Analysis and Prediction of Cloud VM CPU Load Based on EMPC-BCGRU[J].Computer Science,2023,50(8):243-250.
[7]YANG Z X,XIE X L,LI S W.Short Term Load PredictionModel for Cloud Resources Based on VMD-ISSA-LSSVM[J].Research and Exploration in Laboratory,2023,42(6).
[8]DING J L,GONG Z H.Cloud KPI data prediction method based on combined attention model EAAT[J].Journal of Nanjing University of Information Science & Technology(Natural Science Edition),2023,15(6).
[9]KARL M,MARTIN D,ENDA B,et al.Predicting host CPUutilization in the cloud using evolutionary neural networks[J].Future Generation Computer Systems,2018,86:162-173.
[10]RAO S N,SHOBHA G,PRABHU S,et al.Time Series Forecasting methods suitable for prediction of CPU usage[C]//2019 4th International Conference on Computational Systems and Information Technology for Sustainable Solution(CSITSS).IEEE,2019:1-5.
[11]TRAN N,NGUYEN T,NGUYEN B M,et al.A multivariatefuzzy time series resource forecast model for clouds using LSTM and data correlation analysis[J].Procedia Computer Science,2018,126:636-645.
[12]CAO Z,DENG L,XIE T L,et al.Cloud Platform Task CPU Load Prediction Method Using n-LSTM[J].Journal of Chinese Computer Systems,2024,45(1):75-83.
[13]HASAN SHUVO M N,SHAHRIAR MASWOOD M M ,ALHARBI A G.LSRU:A Novel Deep Learning based Hybrid Method to Predict the Workload of Virtual Machines in Cloud Data Center[C]//2020 IEEE Region 10 Symposium(TENSYMP). Dhaka,Bangladesh,2020:1604-1607.
[14]HE X W,XU J J,WANG B,et al.Research on Cloud Computing Resource Load Forecasting Based on GRU-LSTM Combination Model[J].Computer Engineering,2022,48(5):11-17,34.
[15]ZHOU H,ZHANG S,PENG J,et al.Informer:Beyond efficient transformer for long sequence time-series forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:11106-11115.
[16]YANG Q L,JIANG L Y.Study on Load Balancing Algorithm of Microservices Based on Machine Learning[J].Computer Science,2023,50(5):313-321.
[17]SHOORKAND H D,NOURELFATH M,HAJJIA.A hybridCNN-LSTM model for joint optimization of production and imperfect predictive maintenance planning[J].Reliability Engineering & System Safety,2024,241:109707.
[18]GILMER J,SCHOENHOLZ S S,RILEY P F,et al.Neural message passing for quantum chemistry[C]//International Confe-rence on Machine Learning.PMLR,2017:1263-1272.
[19]JOHANNES K,ALEKSANDAR B,STEPHAN G.Predict then propagate:graph neural networks meet personalized pagerank[C]//International Conference on Learning Representations.2018.
[20]THOMAS N K,MAX W.Semi-supervised classification withgraph convolutional networks[C]//International Conference on Learning Representations.2017.
[21]VELICKOVIC P,CUCURULL G,CASANOVA A,et al.Graph attention networks[C]//International Conference on Learning Representations.2018.
[22]GUO H H,WU L Y,ZHAO Q S,et al.Day-ahead electricity price forecasting of power market based on trend index and long short term memory[J].Smart Power,2022,50(9):97-103.
[23]ZHENG Y,GUAN S,GUO K,et al.Technical indicator en-hanced ultra-short-term wind power forecasting based on long short-term memory network combined XGBoost algorithm[J].IET Renewable Power Generation,2024:1-12.
[24]WANG Q Q,DONG F,HE C H,et al.MACD algorithm-based pattern recognition of loading impact of PBAT waste water treated by AnMBR[J].Industrial Water Treatment,2024:1-7.
[25]WANG J Z,BA R J,GE H,et al.Research on early-warning prediction model of critical slide of creep landslide based on the MACD index[J].Hydrogeology & Engineering Geology,2022,49(6):133-140.
[26]Online.Trading Platform [DB/OL].(2022) [2024-01-10].https://github.com/Torchlight-ljj/AIOPSdataset.
[27]Numenta.NAB Data Corpus [DB/OL].(2019) [2024-01-10].https://github.com/numenta/NAB.
[28]Alibaba.Alibaba Cluster Trace Program [DB/OL].(2018)[2024-01-10].https://github.com/alibaba.
[29]CloudWise.Cloud Wise OpenSource [DB/OL].(2021) [2024-01-10].https://github.com/CloudWise-OpenSource/GAIA-DataSet.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!