计算机科学 ›› 2025, Vol. 52 ›› Issue (7): 75-81.doi: 10.11896/jsjkx.240500086

• 计算机软件 • 上一篇    下一篇

参数协同优化的TSVR增强型TSK模糊系统

王维, 赵云龙, 彭小玉, 潘小东   

  1. 西南交通大学数学学院 成都 611756
  • 收稿日期:2024-05-21 修回日期:2024-09-05 发布日期:2025-07-17
  • 通讯作者: 潘小东(xdpan1@163.com)
  • 作者简介:(wwfighting0927@163.com)
  • 基金资助:
    国家自然科学基金(12301595,62106206)

TSK Fuzzy System Enhanced by TSVR with Cooperative Parameter Optimization

WANG Wei, ZHAO Yunlong, PENG Xiaoyu, PAN Xiaodong   

  1. School of Mathematics, Southwest Jiaotong University, Chengdu 611756, China
  • Received:2024-05-21 Revised:2024-09-05 Published:2025-07-17
  • About author:WANG Wei,born in 1999,postgra-duate.Her main research in-terest is fuzzy mathematics and its application.
    PAN Xiaodong,born in 1979,Ph.D,associate professor,Ph.D supervisor.His main research interests include fuzzy information processing,fuzzy set theory and so on.
  • Supported by:
    National Natural Science Fundation of China(12301595,62106206).

摘要: Takagi-Sugeno-Kang(TSK)模糊系统作为特殊的非线性回归系统,能够解决机器学习任务,但其处理高维问题的效果并不理想,且对于规则的确定和调整较为困难。为了优化该系统,将沿用模糊IF-THEN规则。首先运用模糊C均值聚类对数据集进行划分,将数据点嵌入表征点到模糊聚类中心隶属度的空间,进而利用孪生支持向量回归机(TSVR)确定两个回归平面,从而得到回归值。考虑到不同数据集适应不同的关键参数,如聚类数等,采用遗传算法(GA)进行统一参数寻优,简化了领域知识的先验设置,形成了TSVR-GA-TSK(TG-TSK)模糊系统。实验结果表明,相比于经典回归算法和典型的TSK模糊系统,TG-TSK模糊系统具有良好的回归精度和鲁棒性,在Nemenyi检验的两两比较中具有显著优势。

关键词: TSK模糊系统, TSVR, 遗传算法, 协同优化, 回归任务

Abstract: As a special nonlinear regression system,the Takagi-Sugeno-Kang (TSK) fuzzy system can solve machine learning tasks,but its effect on high-dimensional problems is not ideal,and it is difficult to determine and adjust the rules.In order to optimize the system,the fuzzy “IF-THEN” rule is followed.Firstly,the fuzzy clustering algorithm is used to divide the dataset,and the data points are mapped to the space representing the membership degree from the point to the fuzzy clustering center.Secondly,the twin support vector regression machine (TSVR) is used to determine the two regression planes to obtain the regression values.Considering that different datasets adapt to different key parameters such as cluster number,the genetic algorithm (GA) is used to optimize multiple parameters at the same time,which simplifies the prior setting of domain knowledge.All of the above processes are called as TSVR-GA-TSK fuzzy system (TG-TSK).Experimental results show that compared with the classical regression algorithms and the typical TSK fuzzy systems,the TG-TSK fuzzy system has good regression accuracy and robustness,and has a significant advantage in the pairwise comparison of Nemenyi test.

Key words: Takagi-Sugeno-Kang(TSK) fuzzy system, Twin support vector regression machine, Genetic algorithm, Cooperative optimization, Regression task

中图分类号: 

  • TP273.4
[1]SUGENO M,KANG G T.Structure identification of fuzzy mo-del[J].Fuzzy Sets and Systems,1988,28(1):15-33.
[2]WANG L X.Fuzzy System and Fuzzy Control Course[M].Beijing:Tsinghua University Press,2003.
[3]CAI Q F,HAO Z F,LIU W.TSK Fuzzy System based on Fuzzy Partition and Support Vector Machine[J].Pattern Recognition and Artificial Intelligence,2009(3):411-416.
[4]LIANG Y M,SU F,LI Q,et al.Self-organization algorithm of T-S Fuzzy model based on support vector Machine regression and its application[J].Acta Automatica Sinica,2013,39(12):2143-2149.
[5]CHEN S G,WU X J.A new fuzzy twin support vector machine for pattern classification[J].International Journal of Machine Learning and Cybernetics,2018,9:1553-1564.
[6]JIANG Y Z,HUA L,ZHANG Q,et al.Multi-task TSK fuzzy system model driven by multi-task fuzzy clustering[J].Chinese Journal of Applied Sciences,2019,38(5):742-760.
[7]ZHOU T,DENG Z H,JIANG Y Z,et al.Multi-module TSKfuzzy system based on training space reconstruction[J].Journal of Software,2020,31(11):3506-3518.
[8]LOU Q,DENG Z,XIAO Z,et al.Multilabel Takagi-Sugeno-Kang Fuzzy System[J].IEEE Transactions on Fuzzy Systems,2021,30(9):3410-3425.
[9]GUO F,LIU J,LI M,et al.A concise TSK fuzzy ensemble classifier integrating dropout and bagging for high-dimensional problems[J].IEEE Transactions on Fuzzy Systems,2021,30(8):3176-3190.
[10]GU X Q,NI T G,ZHANG C,et al.Probabilistic TSK fuzzy system for collaborative Learning of structure Identification and parameter Optimization[J].Acta Automatica Sinica,2021,47(2):349-362.
[11]BRIKH L,GUENOUNOU O,BAKIR T.Selection of minimum rules from a fuzzy TSK model using a PSO-FCM combination[J].Journal of Control,Automation and Electrical Systems,2023,34(2):384-393.
[12]PENG X.TSVR:An efficient twin support vector machine for regression[J].Neural Networks,2010,23(3):365-372.
[13]LI H.Statistical Learning Methods(2nd Ed.)[M].Beijing:Tsinghua University Press,2012.
[14]OPTIMIZATION S M.A fast algorithm for training supportvector machines[J].CiteSeerX,1998,10(1.43):4376.
[15]BURGES C J C.A tutorial on support vector machine for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2(2):955-974.
[16]XU B Y,GU B J,PAN F,et al.Weighted smooth projection twin support vector regression algorithm[J].Computer Engineering,2022,48(12):104-111,118.
[17]DEMSAR J.Statistical comparisons of classifiers over multiple data sets[J].Journal of Machine Learning Research,2006,7(1):1-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!