计算机科学 ›› 2025, Vol. 52 ›› Issue (8): 288-299.doi: 10.11896/jsjkx.240700094

• 人工智能 • 上一篇    下一篇

基于局部中心解聚类的多模态多目标优化算法

岳彩通, 叶文豪, 张颖洁, 梁静, 林泓宇   

  1. 郑州大学电气与信息工程学院 郑州 450001
  • 收稿日期:2024-07-15 修回日期:2024-10-14 出版日期:2025-08-15 发布日期:2025-08-08
  • 通讯作者: 梁静(liangjing@zzu.edu.cn)
  • 作者简介:(zzuyuecaitong@163.com)
  • 基金资助:
    国家自然科学基金青年项目(62106230);国家自然科学基金区域创新发展联合基金重点项目(U23A20340);河南省自然科学基金优秀青年科学基金(242300421168);国家重点研发计划(2022YFD2001200);重庆邮电大学大数据智能计算重点实验室开放基金(BDIC-2023-A-007)

Multimodal Multiobjective Optimization Algorithm Based on Local Center Clustering

YUE Caitong, YE Wenhao, ZHANG Yingjie, LIANG Jing, LIN Hongyu   

  1. College of Electrical and Information Engineering,Zhengzhou University,Zhengzhou 450001,China
  • Received:2024-07-15 Revised:2024-10-14 Online:2025-08-15 Published:2025-08-08
  • About author:YUE Caitong,born in 1990,Ph.D, professor.His main research interests include multimodal multiobjective optimization,pattern recognition,neural network and particle swarm optimization.
    LIANG Jing,born in 1981,Ph.D,professor,Ph.D supervisor.Her main research interests include evolutionary computation,swarm intelligence,multi-objective optimization and neural network.
  • Supported by:
    National Natural Science Foundation of China(62106230),Key Program of Regional Innovation and Development Joint Fund of the National Natural Science Foundation of China(U23A20340),Natural Science Foundation of Henan(242300421168),National Key R&D Program of China(2022YFD2001200) and Key Laboratory of Big Data Intelligent Computing,Chongqing University of Posts and Telecommunications Open Fundation(BDIC-2023-A-007).

摘要: 在多模态多目标优化问题中,求得多个全局及局部最优解可以为决策者提供更加灵活的选择方案。 然而,目前大多数多模态多目标算法的研究工作侧重于寻找多个等效的全局帕累托最优解,忽略了同样有保留价值的局部帕累托最优解。基于上述问题,提出了一种基于局部中心解聚类的多模态多目标优化算法。该算法通过局部中心解的选择策略来定位尽可能多的最优区域,然后针对种群在最优区域的不同探索情况设计了两种不同的搜索策略,使得种群可以根据自身情况自适应地选择变异策略,从而对每个最优区域进行更好的开发。在CEC2020多模态多目标测试问题集上进行了测试,所设计的进化算法在求解含多个全局帕累托解集和同时含全局及局部帕累托解集的测试问题中都表现出了良好的性能。

关键词: 多模态多目标优化, 全局帕累托最优解, 局部帕累托最优解, 局部中心解

Abstract: In multimodal multiobjective optimization problems,multiple global and local optimal solutions can provide flexible options for decision makers.However,the current research work of multimodal multiobjective algorithms mostly focuses on multiple equivalent global Pareto optimal sets,ignoring the local Pareto optimal sets with the same value.Based on the above problems,a multimodal multiobjective optimization algorithm based on local center clustering is proposed.The algorithm locates as many optimal regions as possible through the selection strategy of the local central solution,and then designs two different search stra-tegies according to different exploration conditions of the population in the optimal region,so that the population can choose the mutation strategy adaptively according to its own conditions.Thus,each optimal region can be explored well.The proposed algorithm is tested on the CEC2020 multimodal multiobjective benchmark function.The results show that the proposed evolutionary algorithm performs well in solving problems with multiple global Pareto sets and both global and local Pareto sets.

Key words: Multimodal multiobjective optimization, Global Pareto optimal sets, Local Pareto optimal sets, Local central solution

中图分类号: 

  • TP273
[1]FONSECA C M,FLEMING P J.An overview of evolutionary algorithms in multiobjective optimization[J].Evolutionary Computation,1995,3(1):1-16.
[2]ZHANG Y,GONG D W,HAO G S,et al.Particle swarm optimization for multi-objective systems with interval parameters[J].Acta Automatica Sinica,2008,34(8):921-928.
[3]GONG W,LIAO Z,MI X,et al.Nonlinear equations solvingwith intelligent optimization algorithms:A survey[J].Complex System Modeling and Simulation,2021,1(1):15-32.
[4]LIN C,TIAN D,DUAN X,et al.3D environmental perception modeling in the simulated autonomous-driving systems[J].Complex System Modeling and Simulation,2021,1(1):45-54.
[5]DEB K.Multi-objective genetic algorithms:Problem difficulties and construction of test problems[J].Evolutionary Computation,1999,7(3):205-230.
[6]ZHANG G J,CHEN M,ZHOU X G.Two-stage differentialevolution algorithm using dynamic niche radius for multimodal optimization[J].Control and Decision,2016,31(7):1185-1191.
[7]YUE C T,LIANG J,QU B Y,et al.A survey on multimodal multiobjective optimization[J].Control and Decision,2021,36(11):2577-2588.
[8]TANABE R,ISHIBUCHI H.A review of evolutionary multimodal multiobjective optimization[J].IEEE Transactions on Evolutionary Computation,2019,24(1):193-200.
[9]LIU Y,ISHIBUCHI H,YEN G G,et al.Handling imbalance be-tween convergence and diversity in the decision space in evolutionary multimodal multiobjective optimization[J].IEEE Tran-sactions on Evolutionary Computation,2019,24(3):551-565.
[10]LI W,ZHANG T,WANG R,et al.Weighted indicator-basedevolutionary algorithm for multimodal multiobjective optimization[J].IEEE Transactions on Evolutionary Computation,2021,25(6):1064-1078.
[11]WANG W,LI G,WANG Y,et al.Clearing-based multimodal multi-objective evolutionary optimization with layer-to-layer strategy[J].Swarm and Evolutionary Computation,2022,68:100976.
[12]TIAN Y,LIU R,ZHANG X,et al.A multipopulation evolutionary algorithm for solving large-scale multimodal multiobjective optimization problems[J].IEEE Transactions on Evolutionary Computation,2020,25(3):405-418.
[13]FAN Q,YAN X.Solving multimodal multiobjective problemsthrough zoning search[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2019,51(8):4836-4847.
[14]YAO X,LI W,PAN X,et al.Multimodal multi-objective evolutionary algorithm for multiple path planning[J].Computers & Industrial Engineering,2022,169:108145.
[15]XIAO J M,ZHOU Q,QU B Y,et al.Multi-objectiveevolutionary algorithm and its application in electricpower environment economic dispatch[J].Journal of Zhengzhou University:Engineering Science,2016,37(2):1-9.
[16]YUE C,QU B,YU K,et al.A novel scalable test problem suite for multimodal multiobjective optimization[J].Swarm and Evolutionary Computation,2019,48:62-71.
[17]LIU Y,ISHIBUCHI H,NOJIMA Y,et al.Searching for local pareto optimal solutions:A case study on polygon-based problems[C]//2019 IEEE Congress on Evolutionary Computation(CEC).New Zealand:IEEE,2019:896-903.
[18]YUE C T,LIANG J J,QU B Y,et al.Multimodal multiobjective optimization in feature selection[C]//2019 IEEE Congress on Evolutionary Computation(CEC).New Zealand:IEEE,2019:302-309.
[19]XU W W,LIANG J,YUE C T,et al.Multimodal multi-objective differential evolution algorithm forsolving nonlinear equations[J]. Application Research of Computers,2019,36(5):1305-1310.
[20]ZHANG T,LI W,WANG R.Surrogated-assisted multimodalmulti-objective optimization for hybrid renewable energy system[J].Complex & Intelligent Systems,2023,9(4):4075-4087.
[21]RABBANI M,HEIDARI R,YAZDANPARAST R.A stochastic multi-period industrial hazardous waste location-routing problem:Integrating NSGA-II and Monte Carlo simulation[J].European Journal of Operational Research,2019,272(3):945-961.
[22]DAI M,TANG D,GIRET A,et al.Multi-objective optimization for energy-efficient flexible job shop scheduling problem with transportation constraints[J].Robotics and Computer-IntegratedManufacturing,2019,59:143-157.
[23]KALYANMOY D.A fast and elitist multi-objective genetic algorithm:NSGA-II[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
[24]ZHANG Q,LI H.MOEA/D:A multiobjective evolutionary algorithm based on decomposition[J].IEEE Transactions on Evolutionary Computation,2007,11(6):712-731.
[25]DEB K,TIWARI S.Omni-optimizer:A generic evolutionary algorithm for single and multi-objective optimization[J].European Journal of Operational Research,2008,185(3):1062-1087.
[26]SHIR O M,PREUSS M,NAUJOKS B,et al.Enhancing decision space diversity in evolutionary multiobjective algorithms[C]//Evolutionary Multi-Criterion Optimization:5th International Conference.Nantes:Springer,2009:95-109.
[27]LIU Y,ISHIBUCHI H,NOJIMA Y,et al.A double-niched evolutionary algorithm and its behavior on polygon-based problems[C]//Parallel Problem Solving from Nature-PPSN XV:15th International Conference.Coimbra:Springer International Publishing,2018:262-273.
[28]YUE C,QU B,LIANG J.A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems[J].IEEE Transactions on Evolutionary Computation,2017,22(5):805-817.
[29]ZHANG W,LI G,ZHANG W,et al.A cluster based PSO with leader updating mechanism and ring-topology for multimodal multi-objective optimization[J].Swarm and Evolutionary Computation,2019,50:100569.
[30]LIANG J,GUO Q,YUE C,et al.A self-organizing multi-objec-tive particle swarm optimization algorithm for multimodal multi-objective problems[C]//Advances in Swarm Intelligence:9th International Conference.Shanghai:Springer International Publishing,2018:550-560.
[31]LIANG J,XU W,YUE C,et al.Multimodal multiobjective optimization with differential evolution[J].Swarm and Evolutionary Computation,2019,44:1028-1059.
[32]PAL M,BANDYOPADHYAY S.Differential evolution formulti-modal multi-objective problems[C]//Proceedings of the Genetic and Evolutionary Computation Conference Companion.Berlin,2019:1399-1406.
[33]LIANG J,QIAO K,YUE C,et al.A clustering-based differential evolution algorithm for solving multimodal multi-objective optimization problems[J].Swarm and Evolutionary Computation,2021,60:100788.
[34]YUE C T,LIANG J J,SUGANTHAN P N,et al.MMOGA for solving multimodal multiobjective optimization problems with local Pareto sets[C]//2020 IEEE Congress on Evolutionary Computation(CEC).IEEE,2020:1-8.
[35]LI W,YAO X,ZHANG T,et al.Hierarchy ranking method for multimodal multiobjective optimization with local Pareto fronts[J].IEEE Transactions on Evolutionary Computation,2023,27(1):98-110.
[36]LIN Q,LIN W,ZHU Z,et al.Multimodal multiobjective evolutionary optimization with dual clustering in decision and objective spaces[J].IEEE Transactions on Evolutionary Computation,2020,25(1):130-144.
[37]LIANG J,SUGANTHAN P,QU B,et al.Problem definitions and evaluation criteria for the CEC 2020 special session on multimodal multiobjective optimization[C]//Proceedings of the 2020 IEEE Congress on Evolutionary Computation(CEC).Glasgow:IEEE,2020.
[38]CHEN H K,WU G H,HUO L S,et al. Objective space division based adaptive multiobjective optimization algorithm[J].Journal of Software,2018,29(9):2649-2663.
[39]LI Z,ZOU J,YANG S,et al.A two-archive algorithm with decomposition and fitness allocation for multi-modal multi-objective optimization[J].Information Sciences,2021,574:413-430.
[40]LIU Y,YEN G G,GONG D.A multimodal multiobjective evolutionary algorithm using two-archive and recombination strategies[J].IEEE Transactions on Evolutionary Computation,2018,23(4):660-674.
[41]YUE C T,SUGANTHAN P N,LIANG J,et al.Differential evolution using improved crowding distance for multimodal multiobjective optimization[J].Swarm and Evolutionary Computation,2021,62:100849.
[42]SUN Y,YEN G G,YI Z.IGD indicator-based evolutionary algorithm for many-objective optimization problems[J].IEEE Transactions on Evolutionary Computation,2018,23(2):173-187.
[43]RIQUELME N,LUCKEN C,BARAN B.Performance metrics in multi-objective optimization[C]//2015 Latin American Computing Conference(CLEI).Salvador:IEEE,2015:1-11.
[44]DANG Q L,XU W,YUAN Y F.A dynamic resource allocation strategy with reinforcement learning for multimodal multi-objective optimization[J].Machine Intelligence Research,2022,19(2):138-152.
[45]LI B L,SHI X L,GOU C X,et al. Multivariant optimization algorithm and its convergence analysis[J].Acta Automatica Sinica,2015,41(5):949-959.
[46]ZHOU A,ZHANG Q,JIN Y.Approximating the set of Pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm[J].IEEE Transactions on Evolutionary Computation,2009,13(5):1167-1189.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!