计算机科学 ›› 2025, Vol. 52 ›› Issue (8): 45-50.doi: 10.11896/jsjkx.250200013

• 软件工程 • 上一篇    下一篇

数据驱动的开源学术成果演化规律与合作模式分析

叶波甸1, 高敏1, 王伟2, 陈阳1   

  1. 1 复旦大学计算与智能创新 上海 200438
    2 华东师范大学数据科学与工程学院 上海 200062
  • 收稿日期:2025-02-05 修回日期:2025-06-04 出版日期:2025-08-15 发布日期:2025-08-08
  • 通讯作者: 陈阳(chenyang@fudan.edu.cn)
  • 作者简介:(bdye22@m.fudan.edu.cn)
  • 基金资助:
    国家自然科学基金(62072115)

Data-driven Analysis of Evolutionary Trends and Collaboration Patterns in Open Source AcademicAchievements

YE Bodian1, GAO Min1, WANG Wei2, CHEN Yang1   

  1. 1 College of Computer Science and Artificial Intelligence,Fudan University,Shanghai 200438,China
    2 School of Data Science and Engineering,East China Normal University,Shanghai 200062,China
  • Received:2025-02-05 Revised:2025-06-04 Online:2025-08-15 Published:2025-08-08
  • About author:YE Bodian,born in 2000,master.Her main research interests include social computing and complex network.
    CHENG Yang,born in 1981,Ph.D,professor.His main research interests include social computing,intelligent networks and systems,and open source big data.
  • Supported by:
    National Natural Science Foundation of China(62072115).

摘要: 开源已经成为当今软件开发领域中不可忽视的潮流,也是推动技术创新与进步的关键力量。深入探究开源发展的趋势及其合作模式,不仅有助于揭示学术界和工业界的发展态势,也能为相关研究人员或者政策制定者提供制定合理目标与规划的依据。基于DBLP数据库,收集1998至2023年间的5 990篇开源主题论文,系统分析了开源领域的整体发展轨迹。通过分析论文发表的期刊/会议、标题、引用数等统计性信息,发现当前开源成果可以被分为开源软件设计开发与开源领域实证研究两种类型,且前者在数量上占据明显优势。为了更有效地揭示开源领域研究者间的合作关系以及对应国家间的合作模式,建模开源领域研究者合作的高阶关系,同时进一步挖掘研究者背后所反映的国家合作网络。研究表明,开源领域大多数研究者来自高校,并且他们的研究兴趣主要集中在软件工程或者开源软件方面。此外,在国家合作网络中占据重要地位的国家是以美国为代表的发达国家,而以中国为代表的发展中国家对开源领域的重视程度也在提高。通过对比各国的合作模式,发现开源领域中跨国合作的模式尚未形成主流。

关键词: 开源, 高阶关系, 合作网络, 国家合作, 演化规律

Abstract: Open source has become a significant trend in software development,driving technological innovation and progress.Insights into current trends and collaboration models can help researchers and policymakers set reasonable goals.This paper analyzes 5 990 papers related to open source from the DBLP database,published between 1998 and 2023,to explore the evolution of open-source related studies.The analysis of publication venues,titles,and citation counts reveals two main categories of research:those focused on open-source software and those on empirical studies,with the former being more prevalent.Additionally,the collaborative relationships among researchers and countries are modeled and the findings indicate that most researchers are affiliated with universities,primarily focusing on software engineering and open-source.Furthermore,collaborations tend to be concentrated within single countries,predominantly involving developed nations.

Key words: Open source, Higher-order relationship, Collaboration network, International collaboration, Evolution

中图分类号: 

  • TP311.5
[1]SCACCHI W.Free/open source software development[C]//Proceedings of the 6th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering.2007:459-468.
[2]HAUGE Ø,AYALA C,CONRADI R.Adoption of open source software in software-intensive organizations-A systematic literature review[J].Information and Software Technology,2010,52(11):1133-1154.
[3]ZHAO S,XIA X,FITZGERALD B,et al.OpenRank Leaderboard:Motivating Open Source Collaborations Through Social Network Evaluation in Alibaba[C]//Proceedings of the 46th International Conference on Software Engineering:Software Engineering in Practice.2024:346-357.
[4]HUANG W,XIA X,ZHOU A,et al.OSGraph:A Data Visualization Insight Platform for Open Source Community[C]//International Conference on Database Systems for Advanced Applications.Singapore:Springer Nature Singapore,2024:476-479.
[5]王洁.加快开源生态系统建设降低开发门槛[N].中国信息化周报,2024-09-30(022).
[6]LIU L,SUN T,HUANG G B.Review of Foreign Research Progress on Open-source Software from 2007 to 2008 [J].Library Development,2009(4):100-106.
[7]MILLER C,COHEN S,KLUG D,et al.“Did you miss my com-ment or what?” understanding toxicity in open source discussions[C]//Proceedings of the 44th International Conference on Software Engineering.2022:710-722.
[8]LI Q F,LI B.Evolution of Contributors in Open Source Software Development[J].Computer Science,2015,42(12):43-46.
[9]HE P,LI B,CHENG C,et al.Analysis of the Co-evolution of Socio-technical Networks in Open-source Software Systems [J].Complex Systems and Complexity Science,2015,12(2):38-45.
[10]XIA H X,ZHANG X,ZHANG X Z.An analysis of developer collaboration networks in the OpenStack open-source software project[J].Systems Engineering-Theory & Practice,2017,37(5):1373-1382.
[11]LEY M.The DBLP computer science bibliography:Evolution,research issues,perspectives[C]//International Symposium on String Processing and Information Retrieval.Berlin,Heidelberg:Springer Berlin Heidelberg,2002:1-10.
[12]GAO J,WU J,DING J.Heterogeneous Graph Condensation[J].IEEE Transactions on Knowledge and Data Engineering,2024,36(7):3126-3138.
[13]ALI Z,QI G,ULLAH I,et al.GLAMOR:Graph-based Language Model embedding for citation Recommendation[C]//Proceedings of the 18th ACM Conference on Recommender Systems.2024:929-933.
[14]PRIEM J,PIWOWAR H,ORR R.OpenAlex:A fully-open index of scholarly works,authors,venues,institutions,and concepts[J].arXiv:2205.01833,2022.
[15]KIM S,LEE S Y,GAO Y,et al.A survey on hypergraph neural networks:an in-depth and step-by-step guide[C]//Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.2024:6534-6544.
[16]FENG Y,YOU H,ZHANG Z,et al.Hypergraph neural networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:3558-3565.
[17]GAO M,LI Z,LI R,et al.EasyGraph:A multifunctional,cross-platform,and effective library for interdisciplinary network analysis[J/OL].https://www.sciencedirect.com/science/article/pii/S2666389923002180.
[18]MANCASTROPPA M,IACOPINI I,PETRI G,et al.Hyper-cores promote localization and efficient seeding in higher-order processes[J].Nature Communications,2023,14(1):6223.
[19]LIU B,ZENG Y J,YANG R M,et al.Fundamental statistics of higher-order networks:a survey[J].Acta Physica Sinica,2024,73(12):128901.
[20]SUN L,JI S,YE J.Hypergraph spectral learning for multi-label classification[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mi-ning.2008:668-676.
[21]LIN Z,ZHANG Y,GONG Q,et al.Structural hole theory in social network analysis:A review[J].IEEE Transactions on Computational Social Systems,2022,9(3):724-739.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!