计算机科学 ›› 2026, Vol. 53 ›› Issue (1): 89-96.doi: 10.11896/jsjkx.241200190
王成, 金城
WANG Cheng, JIN Cheng
摘要: 时间序列数据在金融、医疗、工业和交通等领域中广泛存在,异常检测对确保系统稳定和安全至关重要。由于异常样本的收集十分困难,当前大多数时间序列异常检测方法是无监督的。然而,这些方法普遍存在过泛化问题,即模型不仅能重建正常样本,还能很好地重建异常样本。这一问题使得异常检测效果不佳。因此,提出了一种基于Kolmogorov-Arnold表示理论的时间序列异常检测方法TS-KAN,利用其参数高效性与局部可塑性,使模型更好地拟合正常样本并缓解过泛化问题。此外,提出了局部特征增强层Local-KAN,以增强时域特征的表达能力,提高上下文异常检测能力。在5个主流时间序列异常检测数据集上的实验表明,TS-KAN的异常检测能力显著优于现有方法。
中图分类号:
| [1]ZONG B,SONG Q,MIN MARTIN R Q,et al.Deep autoenco-ding gaussian mixture model for unsupervised anomaly detection[C]//International Conference on Learning Representations.2018. [2]YAIRI T,TAKEISHI N,ODA T,et al.A data-driven healthmonitoring method for satellite housekeeping data based on probabilistic clustering and dimensionality reduction[J].IEEE Transactions on Aerospace and Electronic Systems,2017,53(3):1384-1401. [3]ZHOU Q H,HE S B,LIU H Y,et al.Label-free multivariate time series anomaly detection[J].IEEE Transactions on Know-ledge and Data Engineering,2024,36(7):3166-3179. [4]FREHNER R B,WU K S,SIM A,et al.Detecting Anomalies in Time Series Using Kernel Density Approaches[J].IEEE Access,2024,12:33420-33439. [5]SHEN L F,LI Z C,KWOK J.Timeseries anomaly detectionusing temporal hierarchical one-class network[J].Advances in Neural Information Processing Systems,2020,33:13016-13026. [6]SHIN Y J,LEE S,TARIQ S,et al.Itad:integrative tensor-based anomaly detection system for reducing false positives of satellite systems[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management.2020:2733-2740. [7]DONG C,TAO J F,CHAO Q,et al.Subsequence time series clustering-based unsupervised approach for anomaly detection of axial piston pumps[J].IEEE Transactions on Instrumentation and Measurement,2023,72:1-12. [8]HUNDMAN K,CONSTANTINOU V,LAPORTE C,et al.Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mi-ning.2018:387-395. [9]TARIQ S,LEE S,SHIN Y J,et al.Detecting anomaliesin space using multivariate convolutional LSTM with mixtures of probabilistic PCA[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2019:2123-2133. [10]PARK D,HOSHI Y,KEMP CHARLES C.A multimodal ano-maly detector for robot-assisted feeding using an lstm-based variational autoencoder[J].IEEE Robotics and Automation Letters,2018,3(3):1544-1551. [11]SU Y,ZHAO Y J,NIU C H,et al.Robust anomaly detection for multivariate time series through stochastic recurrent neural network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2019:2828-2837. [12]LI Z H,ZHAO Y J,HAN J Q,et al.Multivariate time seriesanomaly detection and interpretation using hierarchical inter-metric and temporal embedding[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.2021:3220-3230. [13]XU J,WU H,WANG J,et al.Anomaly Transformer:Time Series Anomaly Detection with Association Discrepancy[C]//International Conference on Learning Representations.2022. [14]SUN Y Y,CHEN Z D,FENG C,et al.UMTS-Mixer:Time Series Anomaly Detection Based on Temporal Correlation and Channel Correlation[J].Computer Systems and Applications,2024,33(1):127-133. [15]YE L,HE Z.Multiscale time series anomaly detection incorporating wavelet decomposition[J].Journal of Computer Applications,2024,44(10):3300-3306. [16]GONG D,LIU L Q,LE V,et al.Memorizing normality to detect anomaly:Memory-augmented deep autoencoder for unsupervised anomaly detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:1705-1714. [17]PARK H J,NOH J,HAM B.Learning memory-guided normality for anomaly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:14372-14381. [18]SONG J,KIM K,OH J,et al.MEMTO:Memory-guided transformer for multivariate time series anomaly detection[J].arXiv:2312.02530,2023. [19]LIU Z M,WANG Y X,VAIDYA S,et al.KAN:Kolmogorov-arnold networks[J].arXiv:2404.19756,2024. [20]LIU Z M,MA P C,WANG Y X,et al.KAN 2.0:Kolmogorov-Arnold Networks Meet Science[J].arXiv:2408.10205,2024. [21]SIDHARTH S S.Chebyshev polynomial-based kolmogorov-arnold networks:An efficient architecture for nonlinear function approximation[J].arXiv:2405.07200,2024. [22]AGHAEI A A.fKAN:Fractional Kolmogorov-Arnold Networks with trainable Jacobi basis functions[J].arXiv:2406.07456,2024. [23]BOZORGASL Z,CHEN H.Wav-KAN:Wavelet kolmogorov-arnold networks[J].arXiv:2405.12832,2024. [24]LI C X,LIU X Y,LI W Y,et al.U-KAN Makes Strong Backbone for Medical Image Segmentation and Generation[J].arXiv:2406.02918,2024. [25]VACA-RUBIO C J,BLANCO L,PEREIRA R,et al.Kolmogorov-arnold networks(kans) for time series analysis[J].arXiv:2405.08790,2024. [26]GENET R,INZIRILLO H.TKAN:Temporal Kolmogorov-Arnold Networks[J].arXiv:2405.07344,2024. [27]SONODA S,MURATA N.Neural network with unboundedactivation functions is universal approximator[J].Applied and Computational Harmonic Analysis,2017,43(2):233--268. [28]LAI M J,SHEN Z M.The kolmogorov superposition theoremcan break the curse of dimensionality when approximating high dimensional functions[J].arXiv:2112.09963,2021. [29]ELFWING S,UCHIBE E,DOYA K.Sigmoid-weighted linearunits for neural network function approximation in reinforcement learning[J].Neural networks,2018,107:3-11. [30]SUBAKAN C,RAVANELLI M,CORNELL S,et al.Attention is all you need in speech separation[C]//2021 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).2021:21-25. [31]SARFRAZ M S,CHEN M Y,LAYER L,et al.Position:Quo Vadis,Unsupervised Time Series Anomaly Detection?[C]//Proceedings of the 41st International Conference on Machine Learning.2024:43461-43476. [32]SU Y,ZHAO Y J,NIU C H,et al.Robust anomaly detection for multivariate time series through stochastic recurrent neural network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2019:2828-2837. [33]HUNDMAN K,CONSTANTINOU V,LAPORTE C,et al.Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mi-ning.2018:387-395. [34]LI D,CHEN D C,JIN B H,et al.MAD-GAN:Multivariateanomaly detection for time series data with generative adversarial networks[C]//International Conference on Artificial Neural Networks.2019:703-716. [35]ABDULAAL A,LIU Z H,LANCEWICKI T.Practical approach to asynchronous multivariate time series anomaly detection and localization[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.2021:2485-2494. [36]WU R,KEOGH E J.Current time series anomaly detectionbenchmarks are flawed and are creating the illusion of progress[J].IEEE Transactions on Knowledge and Data Engineering,2021,35(3):2421-2429. |
|
||