摘要: 音频分类与分割是提取音频结构和内容语义的重要手段,是基于内容的音频、视频检索和分析的基础。支持向量机(SVM)是一种有效的统计学习方法。本文提出了一种基于SVM的音频分类算法。将音频分为5类:静音、噪音、音乐、纯语音和带背景音的语音。在分类的基础上,采用3个平滑规则对分类结果进行平滑。分析了SVM分类嚣的分类性能,同时也评估了本文提出的新的音频特征在SVM分类嚣上的分类效果。实验结果显示,基于SVM的音频分类算法分类效果良好,平滑处理后的音频分割结果比较准确。
No related articles found! |
|