计算机科学 ›› 2014, Vol. 41 ›› Issue (Z11): 432-435.

• 智能系统及应用 • 上一篇    下一篇

基于内存计算的钢铁价格预测算法研究

朱靖翔,张滨,乐嘉锦   

  1. 东华大学计算机科学与技术学院 上海201620;东华大学计算机科学与技术学院 上海201620;东华大学计算机科学与技术学院 上海201620
  • 出版日期:2018-11-14 发布日期:2018-11-14
  • 基金资助:
    本文受“核高基”国家科技重大专项(2010ZX01042-001-003-004)资助

Research on Prediction Algorithm Based on In-memory Computing for Steel Prices

ZHU Jing-xiang,ZHANG Bin and LE Jia-jin   

  • Online:2018-11-14 Published:2018-11-14

摘要: 由于钢铁价格具有非线性和因子难以确定的特点,在数据挖掘预测分析时,传统的预测方法只能对钢铁价格进行小数据量的分析,这将导致预测精度低、速度慢、效率低下。随着大数据的深入研究,内存计算技术成为研究热点,用户对实时数据处理技术的需求越来越大。因此,在钢铁价格预测模型中,引入内存计算技术,提出基于内存计算的LM-BP神经网络预测算法,利用2002年到2010年的钢铁价格、产量、库存、GDP等数据建立预测模型。最后,仿真实验结果表明,基于内存计算的预测模型算法不仅速度快,而且精度高。

关键词: 大数据,内存计算,贝叶斯,ARMA,神经网络

Abstract: Because the steel price is nonlinear and its factor is difficult to be determined,in the forecast analysis,the tranditional method can only analyze the steel price with small amount of data,which leads to low accuracy of predection and the slow speed.In the big data era,memory computing in recent years has been a reseach hotpoint,and the requrement for timely data processing gets larger and larger.Based on the memory computing,the steel prices,production,inventory,and GDP data from 2002 to 2010,were used to build the prediction model,Bayessan forcasting model,ARMA model,support vector machine model and BP neural network model to forecast the steel prices.The simulation results show that the prediction model based on the memory not only has fast speed and high accuracy,but also shows the prices real timely.It provides a strong basis for enterprises to make decision on market reaction.

Key words: Big data,In-memory computing,Bayes,ARMA,Neural networks

[1] Sikka V,Frber F,Lehner W,et al.Efficient transaction pro-cessing in SAP HANA database:the end of a column store myth[C]∥Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data.ACM,2012:731-742
[2] Rsch P,Dannecker L,Frber F,et al.A storage advisor for hybrid-store databases[J].Proceedings of the VLDB Endowment,2012,5(12):1748-1758
[3] Frber F,Cha S K,Primsch J,et al.SAP HANA database:data management for modern business applications [J].SIGMOD Record,2011,40(4):45-51
[4] 邹柏贤,刘强.基于ARMA 模型的网络流量预测[J].计算机研究与发展,2002,39(12):1645-1652
[5] 彭岩,王万森,王旭仁.基于机器学习的风险预测方法研究[J].计算机科学,2009,36(4):205-207
[6] 贾丽会,张修如.BP算法分析与改进[J].计算机技术与发展,2006,16(10):101-103
[7] 覃雄派,王会举,李芙蓉.数据管理技术的新格局[J].软件学报,2013,24(2):175-197
[8] 师洪涛,杨静玲,丁茂生.基于小波-BP神经网络的短期风电功率预测方法[J].电力系统自动化,2011,35(16):44-48
[9] 柳进,于继来,唐降龙.基于数据挖掘的电网高峰负荷预测系统[J].计算机工程,2005,31(1):9-11
[10] 姚立忠,李太福,易军.神经网络模型的透明化及输入变量约简[J].计算机科学,2012,39(9):247-251
[11] 韩力群.人工神经网络教程[M].北京:北京邮电大学出版社,2006:12-132
[12] 孙红敏,吴静婷,李晓明.基于改进BP 神经网络的价格预测模型研究[J].东北农业大学学报,2013,4(8):133-137
[13] 韩震,赵宁.基于LM-BP 神经网络的Argo 数据西北太平洋海水温度模型[J].海洋环境科学,2012,1(4):555-560
[14] 王卫东,李净,张福存,等.基于BP 神经网络的太阳辐射预[J].干旱区资源与环境,2014,8(2):185-189
[15] 徐黎明,王清,陈剑平,等.基于BP神经网络的泥石流平均流速预测[J].吉林大学学报:地球科学版,2013,3(1):186-191
[16] 欧阳红祥,李欣,张信娟.人工神经网络在建筑材料价格预测中的应用[J].武汉理工大学学报:信息与管理工程版,2013,5(1):115-118

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!