计算机科学 ›› 2016, Vol. 43 ›› Issue (12): 255-259.doi: 10.11896/j.issn.1002-137X.2016.12.046

• 智能优化 • 上一篇    下一篇

基于直觉模糊熵的改进粒子群算法求解WTA问题

苏丁为,王毅,周创明   

  1. 空军工程大学防空反导学院 西安710051,空军工程大学防空反导学院 西安710051,空军工程大学防空反导学院 西安710051
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受国家自然科学基金(61402517),中国博士后基金(2013M542331),陕西省自然科学基金(2013JQ8035)资助

Improved Particle Swarm Optimization Algorithm for Solving Weapon-target Assignment Problem Based on Intuitionistic Fuzzy Entropy

SU Ding-wei, WANG Yi and ZHOU Chuang-ming   

  • Online:2018-12-01 Published:2018-12-01

摘要: 为了提高求解武器目标分配问题的效率和性能,提出了一种基于直觉模糊熵的改进粒子群算法(IFEIPSO)。首先,针对WTA问题的多约束条件建立了整数编码方案,降低了问题的复杂性;其次,采用一种交换操作和模拟退火机制对粒子群算法的局部最优解进行更新,从而得到更优的局部最优解和全局最优解,以增加算法的局部搜索能力;最后,以直觉模糊熵作为种群多样性的测度,根据熵值大小对种群进行变异操作,提高种群的多样性,增加算法的全局搜索性能。仿真实验结果表明,该算法很好地提高了粒子群算法的寻优能力,有效地解决了WTA问题。

关键词: 武器目标分配,直觉模糊熵,交换操作,模拟退火机制,粒子群算法

Abstract: An improved particle swarm optimization algorithm for solving weapon- target assignment (WTA) problem based on intuitionistic fuzzy entropy (IFEIPSO) was proposed to improve the efficiency and performance.Firstly,the algorithm sets up an integer decoding scheme for a variety of constraints about WTA to decrease the complexity of problem.Then,the algorithm updates the partial best-solution of PSO by using an exchange operation and a simulated annealing mechanism which aims to get the better partial best-solution and global best-solution,and increases the partial searching ability.Finally,the algorithm uses a metric based on intuitionistic fuzzy entropy to measure the diversity of the population,and designs a mutation operation on the basis of entropy value to improve the population’s diversity and global searching performance.The results of simulation indicate that the algorithm improves the searching ability of PSO and it is useful for dealing with WTA problem.

Key words: Weapon-target assignment,Intuitionistic fuzzy entropy,Exchange operation,Simulated annealing mechanism,Particle swarm optimization

[1] Lloyd S P,Witsenhausen H S.Weapons allocation is NP-complete[C]∥Proceedings of the 1986 Summer Computer Simulation Conference.Reno,NV (USA),1986:1045-1058
[2] Wacholder E.A neural network-Based optimization algorithmfor the static weapon-target assignment problem[J].ORSA Journal on Computing,1989(4):232-246
[3] Bisht S.Hybrid genetic-simulated annealing algorithm for optimal weapon allocation in multilayer defence scenario[J].Defence Science Journal,2004,54(3):395-405
[4] Zhou B,Zou F X,Wei J H.A novel approach to solving weapon-target assignment problem based on hybrid particle swarm optimization algorithm[C]∥Proc.of the International Conference on Electronic and Mechanical Engineering and Information Technology.2011:1385-1387
[5] Wang Yan-xia,Qian Long-jun,Guo Zhi,et al.Weapon target assignment problem satisfying expected damage probabilities based on ant colony algorithm[J].Journal of Systems Enginee-ring and Electronics,2008,19(5):939-944
[6] Aydin M E,Fogarty T C.A distributed evolutionary simulated annealing algorithm for combinatorial optimisation problems[J].Journal of Heuristics,2004,10(3):269-292
[7] Lee Z J ,Lee W L.A Hybrid Search Algorithm of Ant Colony Optimization and Genetic Algorithm Applied to Weapon-Target Assignment Problems[C]∥IDEAL 2003.2003,2690:278-285
[8] Ding Zhu,Ma Da-wei,Tang Ming-duan,et al.TSAPSO:A Hybrid Search Algorithm of Tabu Search and Annealing Particle Swarm Optimization for Weapon-Target Assignment[J].Journal of System Simulation.2006,18(9):2480-2483(in Chinese) 丁铸,马大为,汤铭端,等.基于禁忌退火粒子群算法的火力分配[J].系统仿真学报,2006,18(9):2480-2483
[9] Kennedy J,Eberhart R C.Particle swarm optimization[C]∥Proc of IEEE International Conference on Neural Networks.1995:1942-1948
[10] Gao Shang,Yang Jing-yu.Solving weapon-target assignmentproblem by particle swarm optimization algorithm[J].Systems Engineering and Electronics,2005,27(7):1250-1253(in Chinese) 高尚,杨静宇.武器-目标分配问题的粒子群优化算法[J].系统工程与电子技术,2005,27(7):1250-1253
[11] Qu Zai-bin,Liu Yan-jun,Xu Xiao-fei.Discrete particle swarmoptimization for solving WTA problem[J].Journal of Harbin Institute of Technology,2011,43(3):67-69,101(in Chinese) 曲在滨,刘彦君,徐晓飞.用离散粒子群优化算法求解WTA问题[J].哈尔滨工业大学学报,2011,43(3):67-69,101
[12] Fan Cheng-li,Xing Qing-hua,Zheng Ming-fa,et al.Weapon-target allocation optimization algorithm based on IDPSO[J].Systems Engineering and Electronics,2015,37(2):336-342(in Chinese) 范成礼,刑清华,郑明发,等.基于IDPSO的武器目标分配优化算法[J].系统工程与电子技术,2015,37(2):336-342
[13] Zadeh L A.Fuzzy sets[J].Information and Control,1965,8(3):338-356
[14] Wang Yi,Lei Ying-jie.A technique for constructing intuitionistic fuzzy entropy[J].Control and Decision,2007,12(22):1390-1394(in Chinese) 王毅,雷英杰.一种直觉模糊熵的构造方法[J].控制与决策,2007,12(22):1390-1394
[15] Wang Yu-zhe,Lei Ying-jie,Zhou Lin,et al.Intuitionistic fuzzy discrete particle swarm algorithm[J].Control and Decision,2012,27(11):1735-1740(in Chinese) 汪禹喆,雷英杰,周林,等.直觉模糊离散粒子群算法[J].控制与决策,2012,27(11):1735-1740
[16] Ruan Min-zhi,Li Qing-min,Liu Tian-hua,et al.Modeling andOptimization on Fleet Antiaircraft Firepower Allocation[J].ACTA ArmamentarII,2010,31(11):1525-1529(in Chinese) 阮旻智,李庆民,刘天华,等.编队防空火力分配建模及其优化方法研究[J].兵工学报,2010,31(11):1525-1529
[17] Gao Shang,Yang Jing-yu,et al.Particle swarm optimizationbased on the ideal of wimulated annealing algorithm[J].Computer Applications and Software,2005,22(1):103-104,80(in Chinese) 高尚,杨靖宇,等.基于模拟退火算法思想的粒子群优化算法[J].计算机应用与软件,2005,22(1):103-104,80
[18] Wang Shao-Lei,Chen Wei-yi,Gu Xue-feng,et al.Solving weapon-target assignment problems based on self-adaptive differen-tial evolution algorithm[J].Systems Engineering and Electro-nics,2013,35(10):2115-2121(in Chinese) 王少雷,陈维义,顾雪峰,等.自适应差分进化算法求解多平台多武器-目标分配问题[J].系统工程与电子技术,2013,35(10):2115-2121

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!