计算机科学 ›› 2010, Vol. 37 ›› Issue (8): 243-247.

• 人工智能 • 上一篇    下一篇

基于马尔科夫逻辑网络的实体解析改进算法

楼俊杰,徐从富,郝春亮   

  1. (浙江大学人工智能研究所 杭州310027)
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受国家自然科学基金(No. 60970081),国家863计划专题课题(No. 2007AAOlZ1 97) ,"十一五”国防预研项目资助。

Improvement of Entity Resolution Based on Markov Logic Networks

LOU Jun-jie,XU Cong-fu,HAO Chun-liang   

  • Online:2018-12-01 Published:2018-12-01

摘要: 实体解析(Entity Resolution, ER)是数据挖掘过程中关键而又费时的一个步骤。华盛顿大学的I}omingos和Singla提出了基于马尔科夫逻辑网络(Markov Logic Networks, MLNs)的ER算法。基于此算法,在原有的MLNs体系中,引入了一个可变权重的规则,试图解决原有系统无法处理的实体二义性问题。实验证明,新算法能够有效缓解数据记录的二义性问题,并且在一定程度上提高了原始算法的精度。

关键词: ER, MLNs,可变权重

Abstract: Entity Resolution is a crucial and expensive step in the data mining process. Domingos and Singla of University of Washington proposed of well-founded, integrated solution to the entity resolution problem based on Markov Logic.This paper tried to improve Domingos and Singla's solution by adding a formula with a changeable weight to it, to handle the problem of ambiguity of entities that the original system cannot distinguish. The new algorithm can effectively handle ambiguity of entities, and improve accuracy compared with the original algorithm, which is proved by experiment s.

Key words: ER, MI_Ns, Changeable weight

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!