计算机科学 ›› 2019, Vol. 46 ›› Issue (2): 42-49.doi: 10.11896/j.issn.1002-137X.2019.02.007

• 大数据与数据科学 • 上一篇    下一篇

大数据环境下基于公共服务平台的资源多级智能寻租与匹配策略和价值创造

毕娅, 原惠群, 初叶萍, 刘慧   

  1. 湖北经济学院工商管理学院 武汉430205
  • 收稿日期:2018-08-31 出版日期:2019-02-25 发布日期:2019-02-25
  • 通讯作者: 原惠群(1972-),女,博士,副教授,主要研究方向为供应链优化,E-mail:21259537@qq.com
  • 作者简介:毕 娅(1978-),女,博士,副教授,主要研究方向为离散系统仿真与优化、区块链,E-mail:idabiya@126.com;初叶萍(1963-),女,博士,教授,主要研究方向为供应链管理、区块链;刘 慧(1982-),女,博士,副教授,主要研究方向为供应链仿真与优化、选址优化。
  • 基金资助:
    本文受国家自然科学基金(70160376),中国博士后特别资助项目(2017T100560),教育部人文社科青年基金(15YJC630074),湖北物流发展研究中心资助。

Multilevel and Intelligent Rent-seeking and Matching Resource Strategy and Value Creation of Public Service Platform in Big Data Environment

BI Ya, YUAN Hui-qun, CHU Ye-ping, LIU hui   

  1. College of Business Management,Hubei University of Economics,Wuhan 430205,China
  • Received:2018-08-31 Online:2019-02-25 Published:2019-02-25

摘要: 资源的高效寻租与匹配是其价值创造的关键。文中研究大数据环境下基于公共服务平台的资源寻租与匹配问题,针对公共服务资源的非结构化特点,考虑本体树的路径距离、连接深度和广度,重新定义了语义距离,提出了基于语义距离的五元组形式化描述模型,消除了公共服务资源在底层结构和类型上的复杂性;针对公共服务平台上资源及其相关数据信息规模巨大的问题,提出了资源多级智能寻租与匹配策略,首先通过对参数相对较少且简单的ScategorySstatus进行粗粒度过滤,大幅缩小资源寻租的范围,快速提高算法的匹配速度,再通过对Sability和SQoS的细粒度匹配,最终得到符合需求方匹配阈值要求的资源排序集合。实验算例表明,该方法的计算效率显著高于传统的多线程算法,且与目前常用的资源寻租与匹配算法相比,查准率和查全率更优。实验结果证明,该方法有效可行,不仅能够实现公共服务平台上资源的快速寻租和高效匹配,而且还能够在大数据的驱动下实现资源的价值创造。

关键词: 大数据, 公共服务平台, 价值创造, 寻租与匹配, 语义距离

Abstract: The problem of resource rent-seeking and matching based on public service platform in big data environment was studied in this paper.In view of the unstructured features of large data,the semantic distance was redefined by considering the path distance,connection depth and breadth of the ontology tree,and a formal five element description mo-del based on semantic distance was proposed to eliminate the complexity of the large data in the underlying structure and type.In view of the large scale of large data,a strategy of resource classification intelligent rent-seeking and matching was proposed.First,a coarse particle filter is carried out to reduce the range of resource matching and speed up the matching speed of the algorithm by means of coarse particle size of Scategory and Sstatus which has few and simple parameters.Then by fine-grained matching of Sability and SQoS,a resource ordering aggregate satisfying the requirement of the demand side is finally obtained.Experiments show that the computational efficiency of this method is significantlyhigherthan that of traditional multi-threading algorithm,and the precision and recall of this method are also better than those of common resource rent-seeking and matching algorithms.Compared with the existing resource matching algorithm,this method is effective and feasible.It can not only realize the rapid rent-seeking and accurate search of the resources on the public service platform,but also further enhance the value creation of resources under the large data environment.

Key words: Big data, Public service platform, Rent-seeking and matching, Semantic distance, Value creation

中图分类号: 

  • TP274
[1]DIEBOLD F.On the Origin(s) and Development of the Term “Big Data”[Z].Pier Working Paper Archive,Penn Institute for Economic Research,Department of Economics,University of Pennsylvania,2012.
[2]Nature.Big Data [EB/OL].http:// www.nature.com/news/specials/ bigdata/ index.html.
[3]Science.Special online collection:Dealing with data [EB/OL].http://www.sciencemag.org/site.special/data/,2011.
[4]Big Data Across the Federal Government [EB/OL].http:// whitehouse.gov/sites/default/files/microsites/ostp/big_data_fact_sheet_final_1.pdf.
[5]UN Global Pulse.Big Data for Development:Challenges and Opportunities [R/OL].http://www.ungloblpolse.org/projects/Bigdatafordevelopment.
[6]CHEN Z N,LI B H,CAI X D,et al.The overall development strategy research of “Internet Plus” action plan[J].Engineering Sciences,2018,20(2):1-141,151.(in Chinese)
陈左宁,李伯虎,柴旭东,等.“互联网+”行动计划总体发展战略研究[J].中国工程科学,2018,20(2):1-141,151.
[7]SUN A B,JI T K,WU X Q.Design and realization of big data open platform for smart city [J].Journal of Computer Applications,2017,37(S1):340-343.(in Chinese)
孙傲冰,季统凯,伍小强.面向智慧城市的大数据开放共享平台的设计与实现[J].计算机应用,2017,37(S1):340-343.
[8]XU Q S,YANG L H.On Influence and Application of Big Data for E-government in Cnina[J].Journal of Beijing University of Aeronautics and Astronautics(Social Ccience Edition),2016,29(6):7-12,26.(in Chinese)
徐青山,杨立华.大数据对中国电子政务发展的影响及应用[J].北京航空航天大学学报(社会科学版),2016,29(6):7-12,26.
[9]MA B,MAO Q D.The Application of Big-data Approach in Emergency Management[J].Chinese Public Administration,2015(3):136-141,151.(in Chinese)
马奔,毛庆铎.大数据在应急管理中的应用[J].中国行政管理,2015(3):136-141,151.
[10]BI Y,ZHOU B,LENG K J,et al.Public blockchain of pharmaceutical business resources based on double chain architecture[J].Computer Science,2018,45(2):40-47.(in Chinese)
毕娅,周贝,冷凯君,等.基于双链架构的公共服务资源公有区块链[J].计算机科学,2018,45(2):40-47.
[11]LI D R,YAO Y,SHAO Z F.Big Data in Smart City [J].Geomatics and Information Science of Wuhan University,2014,39(6):631-640.(in Chinese)
李德仁,姚远,邵振峰.智慧城市中的大数据[J].武汉大学学报(信息科学版),2014,39(6):631-640.
[12]MENG X F,CI X.Big Data Management:Concept,Techniques and Challenges [J].Journal of Computer Research and Development,2013,50(1):146-169.(in Chinese)
孟小峰,慈祥.大数据管理:概念,技术与挑战[J].计算机研究与发展,2013,50(1):146-169.
[13]DEDIC N,STANIER C.TowardsDifferentiating Business Intelligence,Big Data,Data Analytics and Knowledge Discovery[C]∥Proceedings of International Conference on Enterprise Resource Planning Systems.Hagenberg,Austria,2016:114-122.
[14]ZHANG Y,ZHANG J H,LIU B.Big Data Dynamic Migration Method Based on Global Load Balancing in Cloud Environment [J].Computer Science,2018,45(1):196-199.(in Chinese)
章勇,张洁卉,柳斌.全局负载均衡下云环境中的大数据动态迁移方法[J].计算机科学,2018,45(1):196-199.
[15]MENG X F,ZHANG X J.Big data privacy management [J].Journal of Computer Research and Development,2015,52(2):265-281.(in Chinese)
孟小峰,张啸剑.大数据隐私管理[J].计算机研究与发展,2015,52(2):265-281.
[16]VACHARASINTOPCHAI T,BARRY W,WUWONGSE V,et al.Semantic web services framework for computational mecha-nics[J].Journal of computing in civil engineering,2007,21(2):65-77.
[17] CHEN F,LU C,WU H,et al.A semantic similarity measure integrating multiple conceptual relationships for web service discovery[J].Expert Systems with Applications,2017,67(C):19-31.
[18]BAI L,LIU M.Fuzzy sets and similarity relation for semantic web service matching [J].Computers and Mathematics with Applications,2011,61(8):2281-2288.
[19]XIAO Y Y,LI B H,CAI X D.Research on the formalization description method of manufacturing capability service in cloud manufacturing[J].Journal of System Stimulation,2015,9(27):2096-2107.(in Chinese)
肖莹莹,李伯虎,柴旭东.云制造中的制造能力服务形式化描述方法[J].系统仿真学报,2015,9(27):2096-2107.
[20]GUO L.A system design method for cloud manufacturing application system[J].International Journal of AdvancedManufacturing Technology,2016,84(1-4):275-289.
[21]WANG W X.Cloud manufacturing resources semantic description and service matching strategy[J].Journal of Chongqing University(Natural Science Edition),2017,40(5):1-6.(in Chinese)
汪卫星.云制造资源语义描述和服务匹配策略[J].重庆大学学报,2017,40(5):1-6.
[22]POP C,CIOARA T,ANTAL M,et al.Blockchain Based Decentralized Management ofDemand Response Programs in Smart Energy Grids [J].Sensors (Basel),2018,18(1):162-182.
[23]BOUZARY H,CHEN F F.Service optimal selection and composition in cloud manufacturing:a comprehensive survey[J].The International Journal of Advanced Manufacturing Technology,2018,97(1-4):795-808.
[24]YANG X L,QIAN C,ZHU F X.Evaluation Method of Big Data Service Resources Based on Cloud Computing[J].Computer Scien-ce,2018,45(5):295-299.(in Chinese)
阳小兰,钱程,朱福喜.基于云计算的大数据服务资源评价方法[J].计算机科学,2018,45(5):295-299.
[25]PENG H,SHI Z Z,QIU L R,et al.Matching Algorithm of Semantic Web Service Based on Similarity of Ontology Concepts[J].Computer Engineering,2008,34(15):51-53.
[26]CHAO K,YOUNAS M,LO C,et al.Fuzzy matchmaking for web service [C]∥ Proceedings of the 19th International Con-ference on Advanced Information Networking and Applications.Washington,D C,USA:IEEE,2005:721-726.
[1] 何强, 尹震宇, 黄敏, 王兴伟, 王源田, 崔硕, 赵勇.
基于大数据的进化网络影响力分析研究综述
Survey of Influence Analysis of Evolutionary Network Based on Big Data
计算机科学, 2022, 49(8): 1-11. https://doi.org/10.11896/jsjkx.210700240
[2] 陈晶, 吴玲玲.
多源异构环境下的车联网大数据混合属性特征检测方法
Mixed Attribute Feature Detection Method of Internet of Vehicles Big Datain Multi-source Heterogeneous Environment
计算机科学, 2022, 49(8): 108-112. https://doi.org/10.11896/jsjkx.220300273
[3] 王美珊, 姚兰, 高福祥, 徐军灿.
面向医疗集值数据的差分隐私保护技术研究
Study on Differential Privacy Protection for Medical Set-Valued Data
计算机科学, 2022, 49(4): 362-368. https://doi.org/10.11896/jsjkx.210300032
[4] 孙轩, 王焕骁.
政务大数据安全防护能力建设:基于技术和管理视角的探讨
Capability Building for Government Big Data Safety Protection:Discussions from Technologicaland Management Perspectives
计算机科学, 2022, 49(4): 67-73. https://doi.org/10.11896/jsjkx.211000010
[5] 王俊, 王修来, 庞威, 赵鸿飞.
面向科技前瞻预测的大数据治理研究
Research on Big Data Governance for Science and Technology Forecast
计算机科学, 2021, 48(9): 36-42. https://doi.org/10.11896/jsjkx.210500207
[6] 余乐章, 夏天宇, 荆一楠, 何震瀛, 王晓阳.
面向大数据分析的智能交互向导系统
Smart Interactive Guide System for Big Data Analytics
计算机科学, 2021, 48(9): 110-117. https://doi.org/10.11896/jsjkx.200900083
[7] 王立梅, 朱旭光, 汪德嘉, 张勇, 邢春晓.
基于深度学习的民事案件判决结果分类方法研究
Study on Judicial Data Classification Method Based on Natural Language Processing Technologies
计算机科学, 2021, 48(8): 80-85. https://doi.org/10.11896/jsjkx.210300130
[8] 王雪岑, 张昱, 刘迎婕, 于戈.
基于表示学习的在线学习交互质量评价方法
Evaluation of Quality of Interaction in Online Learning Based on Representation Learning
计算机科学, 2021, 48(2): 207-211. https://doi.org/10.11896/jsjkx.201000042
[9] 滕建, 滕飞, 李天瑞.
基于3D卷积和LSTM编码解码的出行需求预测
Travel Demand Forecasting Based on 3D Convolution and LSTM Encoder-Decoder
计算机科学, 2021, 48(12): 195-203. https://doi.org/10.11896/jsjkx.210400022
[10] 张育龙, 王强, 陈明康, 孙静涛.
图像去雨算法在云物联网应用中的研究综述
Survey of Intelligent Rain Removal Algorithms for Cloud-IoT Systems
计算机科学, 2021, 48(12): 231-242. https://doi.org/10.11896/jsjkx.201000055
[11] 周小诗, 张梓葳, 文娟.
基于神经网络机器翻译的自然语言信息隐藏
Natural Language Steganography Based on Neural Machine Translation
计算机科学, 2021, 48(11A): 557-564. https://doi.org/10.11896/jsjkx.210100015
[12] 曹萌, 于洋, 梁英, 史红周.
基于区块链的大数据交易关键技术与发展趋势
Key Technologies and Development Trends of Big Data Trade Based on Blockchain
计算机科学, 2021, 48(11A): 184-190. https://doi.org/10.11896/jsjkx.210100163
[13] 刘亚臣, 黄雪莹.
卫星监测时空大数据蠕变特征提取及预警算法
Research on Creep Feature Extraction and Early Warning Algorithm Based on Satellite MonitoringSpatial-Temporal Big Data
计算机科学, 2021, 48(11A): 258-264. https://doi.org/10.11896/jsjkx.201000071
[14] 张光君, 张翔.
应用“大数据+区块链”优化立法评估制度的机理与路径
Mechanism and Path of Optimizing Institution of Legislative Evaluation by Applying “Big Data+Blockchain”
计算机科学, 2021, 48(10): 324-333. https://doi.org/10.11896/jsjkx.201200105
[15] 叶雅珍, 刘国华, 朱扬勇.
数据产品流通的两阶段授权模式
Two-step Authorization Pattern of Data Product Circulation
计算机科学, 2021, 48(1): 119-124. https://doi.org/10.11896/jsjkx.191100217
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!