计算机科学 ›› 2018, Vol. 45 ›› Issue (11A): 203-207.

• 模式识别与图像处理 • 上一篇    下一篇

深度卷积神经网络实现硬性渗出的自动检测

蔡震震, 唐鹏, 胡建斌, 金炜东   

  1. 西南交通大学 成都610036
  • 出版日期:2019-02-26 发布日期:2019-02-26
  • 通讯作者: 胡建斌(1964-),主要研究方向为模式识别与智能系统,E-mail:hujbin@163.com
  • 作者简介:蔡震震(1990-),硕士生,主要研究方向为图像处理等;唐 鹏(1979-),讲师,主要研究方向为智能信息处理;金炜东(1959-),教授,主要研究方向为智能信息处理。
  • 基金资助:
    本文受中央高校基本科研业务费创新项目基金(2682014CX027)资助。

Auto-detection of Hard Exudates Based on Deep Convolutional Neural Network

CAI Zhen-zhen, TANG Peng, HU Jian-bin, JIN Wei-dong   

  1. Southwest Jiaotong University,Chengdu 610036,China
  • Online:2019-02-26 Published:2019-02-26

摘要: 为实现硬性渗出的自动检测,构建糖网病计算机辅助诊断系统,文中提出了一种基于深度卷积神经网络的硬性渗出提取方法。该方法主要分为两个部分:线下训练硬性渗出分类模型和在线检测硬性渗出。线下训练分类模型是利用深度卷积神经网络自动提取特征训练出硬性渗出的分类模型;在线检测硬性渗出使用训练好的分类模型对眼底影像中的硬性渗出进行检测,并获取硬性渗出的概率图以及伪彩色图。利用文中方法在标准数据集DIARETDB1和自选数据集上进行验证,结果表明所提方法行之有效,鲁棒性较好,具有很强的临床实践意义。

关键词: 概率图, 卷积神经网络, 糖网病, 伪彩色图, 硬性渗出

Abstract: A hard exudates (HEs) detection method based on deep convolution neural network was proposed in this paper,which achieves the purpose of automatic detection for HEs and contributes to the creation of diabetic retinopathy (DR) computer-aided diagnostic system.This method includes training the classification model for HEs offline and detection for HEs online.In order to train HEs classification model offline,CNN is adopted to extract HEs features automatically.Then,HEs in fundus image are detected by HEs classification model which has been trained offline,meanwhile,HEs probability graph and HEs pseudo-color map are obtained.The method was verified on standard data set and self-built data set respectively.Compared with other methods,the proposed method is profitable with strong robustness,and has very strong clinical practice significance.

Key words: Convolutional neural network, Diabetic retinopathy, Hard exudates, Probability graph, Pseudo-color map

中图分类号: 

  • TP181
[1]美丽巴努·玉素甫,陈雪艺.视力损害的流行病学研究[J].国际眼科杂志,2010,10(2):304-307.
[2]丁山,宋丽晓.一种改进的视网膜图像中微小动脉瘤的检测算法[J].计算机科学,2014,42(12):269-274.
[3]GREENSPAN H,GINNEKEN B,SUMMERS R M.Guest Editorial Deep Learning in Medical Imaging:Overview and Future Promise of an Exciting New Technique [J].IEEE Transactions on Medical Imaging,2016,5(35):1153-1159.
[4]RAVISHANKAR S,JAIN S,MITTAL A.Automated feature extraction for early detection of diabetic retinopathy in fundus images[C]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.Anchorage Alaska,America:CVPR,2009:210-217.
[5]GANDHI M,DHANASEKARAN R.Diagnosis of diabetic retinopathy using morphological process and SVM classifier[C]∥IEEE International Conference on Communication and Signal Processing.Washington,America:ICCSP,2013:873-877.
[6]LI H,CHUTATAPE O.Automated feature extraction in color retinal images by a model based approach [J].IEEE Transactions on Biomedical Engineering,2004,51(2):246-254.
[7]TAMILARASI M,DURAISWAMY K.Genetic based Fuzzy Seeded Region Growing Segmentation for Diabetic Retinopathy Images [C]∥International Conference on Computer Communication and Informatics.Tamil Nadu,India:ICCCI,2013.
[8]高玮玮,沈建新,程武山,等.基于改进的模糊C-均值聚类算法及支持向量机的眼底图像中硬性渗出检测方法[J].北京生物医学工程,2017,36(4):331-337.
[9]张磊,卜巍,邬向前,等.基于背景估计和集成分类的眼底硬性渗出检测[J].智能计算机与应用,2017,7(5):66-69.
[10]肖志涛,王雯,耿磊,等.基于背景估计和SVM分类器的眼底图像硬性渗出物检测方法[J].中国生物医学工程学报,2015,34(6):720-728.
[11]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolution neural networks[J].Advances in Neural Information Processing System,2012,25(2):1097-1105.
[12]ZHANG N,DONAHUE J,GIRSHICK R,et al.Part-Based R-CNNs for Fine-Grained Category Detection[C]∥European Conference on Computer Vision.Springer,Cham,2014:834-849.
[13]GIRSHICK R.Fast R-CNN[C]∥IEEE International Confe-rence on Computer Vision.IEEE Computer Society.2015:1440-1448.
[14]REN S,HE K,GIRSHICK R,et al.Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks[C]∥International Conference on Neural Information Processing Systems.MIT Press,2015:91-99.
[15]蔡震震,唐鹏,胡建斌,等.基于形态学轮廓分析的眼底影像中视盘的定位[C]∥中国控制会议.2016:9434-9438.
[16]KAUPPI T,KALESNYKIENE V,KAMARAINEN J K,et al.DIARETDB1 diabetic retinopathy database and evaluation protocol[C]∥British Machine Vision Conference.2007.
[1] 周乐员, 张剑华, 袁甜甜, 陈胜勇.
多层注意力机制融合的序列到序列中国连续手语识别和翻译
Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion
计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026
[2] 李宗民, 张玉鹏, 刘玉杰, 李华.
基于可变形图卷积的点云表征学习
Deformable Graph Convolutional Networks Based Point Cloud Representation Learning
计算机科学, 2022, 49(8): 273-278. https://doi.org/10.11896/jsjkx.210900023
[3] 陈泳全, 姜瑛.
基于卷积神经网络的APP用户行为分析方法
Analysis Method of APP User Behavior Based on Convolutional Neural Network
计算机科学, 2022, 49(8): 78-85. https://doi.org/10.11896/jsjkx.210700121
[4] 朱承璋, 黄嘉儿, 肖亚龙, 王晗, 邹北骥.
基于注意力机制的医学影像深度哈希检索算法
Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism
计算机科学, 2022, 49(8): 113-119. https://doi.org/10.11896/jsjkx.210700153
[5] 檀莹莹, 王俊丽, 张超波.
基于图卷积神经网络的文本分类方法研究综述
Review of Text Classification Methods Based on Graph Convolutional Network
计算机科学, 2022, 49(8): 205-216. https://doi.org/10.11896/jsjkx.210800064
[6] 张颖涛, 张杰, 张睿, 张文强.
全局信息引导的真实图像风格迁移
Photorealistic Style Transfer Guided by Global Information
计算机科学, 2022, 49(7): 100-105. https://doi.org/10.11896/jsjkx.210600036
[7] 戴朝霞, 李锦欣, 张向东, 徐旭, 梅林, 张亮.
基于DNGAN的磁共振图像超分辨率重建算法
Super-resolution Reconstruction of MRI Based on DNGAN
计算机科学, 2022, 49(7): 113-119. https://doi.org/10.11896/jsjkx.210600105
[8] 刘月红, 牛少华, 神显豪.
基于卷积神经网络的虚拟现实视频帧内预测编码
Virtual Reality Video Intraframe Prediction Coding Based on Convolutional Neural Network
计算机科学, 2022, 49(7): 127-131. https://doi.org/10.11896/jsjkx.211100179
[9] 徐鸣珂, 张帆.
Head Fusion:一种提高语音情绪识别的准确性和鲁棒性的方法
Head Fusion:A Method to Improve Accuracy and Robustness of Speech Emotion Recognition
计算机科学, 2022, 49(7): 132-141. https://doi.org/10.11896/jsjkx.210100085
[10] 金方焱, 王秀利.
融合RACNN和BiLSTM的金融领域事件隐式因果关系抽取
Implicit Causality Extraction of Financial Events Integrating RACNN and BiLSTM
计算机科学, 2022, 49(7): 179-186. https://doi.org/10.11896/jsjkx.210500190
[11] 张嘉淏, 刘峰, 齐佳音.
一种基于Bottleneck Transformer的轻量级微表情识别架构
Lightweight Micro-expression Recognition Architecture Based on Bottleneck Transformer
计算机科学, 2022, 49(6A): 370-377. https://doi.org/10.11896/jsjkx.210500023
[12] 王建明, 陈响育, 杨自忠, 史晨阳, 张宇航, 钱正坤.
不同数据增强方法对模型识别精度的影响
Influence of Different Data Augmentation Methods on Model Recognition Accuracy
计算机科学, 2022, 49(6A): 418-423. https://doi.org/10.11896/jsjkx.210700210
[13] 孙洁琪, 李亚峰, 张文博, 刘鹏辉.
基于离散小波变换的双域特征融合深度卷积神经网络
Dual-field Feature Fusion Deep Convolutional Neural Network Based on Discrete Wavelet Transformation
计算机科学, 2022, 49(6A): 434-440. https://doi.org/10.11896/jsjkx.210900199
[14] 杨玥, 冯涛, 梁虹, 杨扬.
融合交叉注意力机制的图像任意风格迁移
Image Arbitrary Style Transfer via Criss-cross Attention
计算机科学, 2022, 49(6A): 345-352. https://doi.org/10.11896/jsjkx.210700236
[15] 杨健楠, 张帆.
一种结合双注意力机制和层次网络结构的细碎农作物分类方法
Classification Method for Small Crops Combining Dual Attention Mechanisms and Hierarchical Network Structure
计算机科学, 2022, 49(6A): 353-357. https://doi.org/10.11896/jsjkx.210200169
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!