计算机科学 ›› 2019, Vol. 46 ›› Issue (6): 311-315.doi: 10.11896/j.issn.1002-137X.2019.06.047

• 图形图像与模式识别 • 上一篇    下一篇

基于连续性约束背景模型减除的运动目标检测

祝轩, 王磊, 张超, 梅东锋, 薛珈萍, 曹晴雯   

  1. (西北大学信息科学与技术学院 西安710127)
  • 收稿日期:2018-05-29 发布日期:2019-06-24
  • 通讯作者: 祝 轩(1968-),女,博士,教授,主要研究方向为计算机视觉、稀疏表示、模式识别,E-mail:xuan_zhu@126.com
  • 作者简介:王 磊(1994-),女,硕士生,主要研究方向为图像/图形处理;张 超(1995-),女,硕士生,主要研究方向为计算机视觉、稀疏表示;梅东锋(1993-),男,硕士生,主要研究方向为机器学习;薛珈萍(1995-),女,硕士生,主要研究方向为图像/图形处理;曹晴雯(1994-),女,硕士生,主要研究方向为图像/图形处理。
  • 基金资助:
    陕西省自然科学基础研究计划重点项目(2018JZ6007)资助。

Moving Object Detection Based on Continuous Constraint Background Model Deduction

ZHU Xuan, WANG Lei, ZHANG Chao, MEI Dong-feng, XUE Jia-ping, CAO Qing-wen   

  1. (School of Information Science and Technology,Northwest University,Xi’an 710127,China)
  • Received:2018-05-29 Published:2019-06-24

摘要: 运动目标检测是机器视觉领域中的关键技术之一,其在视频运动目标检测、遥感信息处理和军事侦察等领域有广泛的应用。考虑到视频中相邻视频帧背景相似性高且时间连续性长,而阴影和噪声具有非连续性的特征,文中提出一种时间连续性约束的低秩分解背景更新模型,并将其应用于背景模型减除的视频运动目标检测。该方法首先对视频进行低秩分解,获得低秩分量和稀疏分量;然后基于连续性约束背景更新模型更新低秩分量,构建背景;最后通过背景减除及自适应阈值分割获得运动目标。实验结果表明,无论是FM指标还是ROC曲线都反映出所提方法相比目前较好的背景减除方法能够有效克服阴影和噪声的影响,避免“空洞”,更准确地提取运动目标,且鲁棒性好。

关键词: 背景减除, 低秩分解, 连续性约束, 运动目标检测

Abstract: Moving target detection is one of the key technologies in the field of machine vision.Moving object detection is widely used in video moving object detection,remote sensing information processing and military reconnaissance,etc.Considering that the background similarity of adjacent video frames is high,and the shadow and noise are disconti-nuous,this paper proposed a low-rank decomposition background updating model with time continuity constraint,and applied it to the moving object detection of background subtraction.Firstly,low-rank components and sparse components are obtained by using low-rank decomposition.Then the background is constructed by updating the low-rank components based on time continuity constrained.Finally,moving object is obtained by background subtraction and adaptive threshold segmentation.Experimental results show that both the FM index and the ROC curve reflect that compared with the state-of-the-art background subtraction methods,this method can effectively overcome the influence of shadow and noise,reduce holes,extract moving objects more accurately,and has good robustness.

Key words: Background subtraction, Continuity constraint, Low rank decomposition, Moving object detection

中图分类号: 

  • TN911.73
[1]ZHAO Y,SHI H,CHEN X,et al.An overview of object detection and tracking[C]∥IEEE International Conference on Information and Automation.2015:280-286.
[2]XUE L X,LUO Y L,WANG Z C.Detection algorithm of adaptive moving objects based on frame difference method[J].Application Research of Computers,2011,28(4):1551-274.
[3]GAO P,SUN X,WANG W.Moving object detection based on kirsch operator combined with Optical Flow[C]∥International Conference on Image Analysis and Signal Processing.2010:620-624.
[4]BARNICH O,DROOGENBROECK M V.ViBe:A Universal Background Subtraction Algorithm for Video Sequences[J].IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society,2011,20(6):1709-1724.
[5]WENG M,HUANG G,DA X.A new interframe difference algorithm for moving target detection[C]∥International Congress on Image and Signal Processing.2010:A52-A53.
[6]HUANG S Q,LI G.A Review of Research on Moving Target Detection Technology in Intelligent Video Surveillance System[J].Information and Communications,2012,120(4):57-58.(in Chinese)
黄斯茜,李光.智能视频监控系统运动目标检测技术研究综述[J].信息通信,2012,120(4):57-58.
[7]LI Q L,HE J F.Vehicle Detection Based on Three-Frame Difference Method and Cross Entropy Threshold Method[J].Computer Engineering,2011,37(4):172-174.(in Chinese)
李秋林,何家峰.基于三帧差法和交叉熵阈值法的车辆检测[J].计算机工程,2011,37(4):172-174.
[8]ZUO F Y,GAO S F,HAN J Y.Moving Object Detection and Tracking Based on Weighted Accumulative Difference[J].Computer Engineering,2009,35(22):159-161.
[9]KROEGER T,TIMOFTE R,DAI D,et al.Fast Optical Flow Using Dense Inverse Search[M]∥Computer Vision-ECCV 2016.Springer International Publishing,2016:471-488.
[10]YANG H,QU S.Real-time vehicle detection and counting in complex traffic scenes using background subtraction model with low-rank decomposition[J].Iet Intelligent Transport Systems,2018,12(1):75-85.
[11]LI X.Research on Moving Target Detection Method in Intelligent Video Surveillance Images[J].Wireless Interconnect Technology,2013(8):158-158.(in Chinese)
李想.智能视频监控图像中运动目标检测方法的研究[J].无线互联科技,2013(8):158-158.
[12]ZHOU M,SONG Z J.Video background modeling based on sparse and low rank matrix decomposition[J].Application Research of Computers,2015,32(10):3175-3178.(in Chinese)
周密,宋占杰.基于稀疏与低秩矩阵分解的视频背景建模[J].计算机应用研究,2015,32(10):3175-3178.
[13]LIN Z,CHEN M,MA Y.The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices[J].arXiv:1009.5055.
[14]AYBAT N S,GOLDFARB D,MA S.Efficient algorithms for robust and stable principal component pursuit problems[J].Computational Optimization & Applications,2014,58(1):1-29.
[15]LIU G,YAN S.Active subspace:toward scalable low-rank learning[J].Neural Computation,2012,24(12):3371-3394.
[16]ZHOU T,TAO D.GoDec:Randomized Lowrank & Sparse Matrix Decomposition in Noisy Case[C]∥International Confe-rence on Machine Learning.DBLP,2011:33-40.
[17]YE X,YANG J,SUN X,et al.Foreground-Background Separation From Video Clips via Motion-Assisted Matrix Restoration[J].IEEE Transactions on Circuits & Systems for Video Technology,2015,25(11):1721-1734.
[18]WRIGHT J,GANESH A,RAO S,et al.Robust Principal Component Analysis:Exact Recovery of Corrupted Low-Rank Matrices[C]∥Neural Networks for Signal Processing X,2000.Proceedings of the 2000 IEEE Signal Processing Society Workshop.IEEE,2009:289-298.
[19]VIDAL R,MA Y,SASTRY S S.Robust Principal Component Analysis[J].Journal of the Acm,2016,58(3):1-37.
[20]LIU G,LIN Z,YU Y.Robust Subspace Segmentation by Low-Rank Representation[C]∥International Conference on Machine Learning.DBLP,2010:663-670.
[21]LI S S,AN J B,LI C G,et al.Sports Ship Detection Method Based on Background Difference and Visual Saliency[J].Internet of Things Technology,2018(1):17-20.
[22]GU S,XIE Q,MENG D,et al.Weighted Nuclear Norm Minimization and Its Applications to Low Level Vision[J].Internatio-nal Journal of Computer Vision,2017,121(2):183-208.
[23]MEI D,ZHU X,WANG X,et al.Image super-resolution based on structural dissimilarity learning dictionary[C]∥International Conference on the Frontiers and Advances in Data Science.IEEE,2018:12-17.
[1] 辛元雪, 史朋飞, 薛瑞阳.
基于区域提取与改进 LBP 特征的运动目标检测
Moving Object Detection Based on Region Extraction and Improved LBP Features
计算机科学, 2021, 48(7): 233-237. https://doi.org/10.11896/jsjkx.200600131
[2] 唐佳林,郑杰锋,李熙莹,苏秉华.
航拍视频中运动目标检测算法研究
Research on Detecting Algorithm of Moving Target in Aerial Video
计算机科学, 2017, 44(Z11): 175-177. https://doi.org/10.11896/j.issn.1002-137X.2017.11A.036
[3] 张文雅,徐华中,罗杰.
基于ViBe的复杂背景下的运动目标检测
Moving Objects Detection under Complex Background Based on ViBe
计算机科学, 2017, 44(9): 304-307. https://doi.org/10.11896/j.issn.1002-137X.2017.09.057
[4] 王思思,任世卿.
一种改进的基于混合高斯模型的运动目标检测算法
Improved Moving Target Detection Algorithm Based on Gaussian Mixture Model
计算机科学, 2015, 42(Z11): 173-174.
[5] 张小骏,刘志镜,陈昆.
一种基于像素梯度信息的背景减除法
Background Subtraction Based on Local Gradient Feature
计算机科学, 2015, 42(8): 300-304.
[6] 张笙,严云洋,李郁峰.
热红外与可见光视频融合的运动目标检测
Moving Target Detection Using Fusion of Visual and Thermal Video
计算机科学, 2015, 42(8): 86-89.
[7] 范文超,李晓宇,魏 凯,陈兴林.
基于改进的高斯混合模型的运动目标检测
Moving Target Detection Based on Improved Gaussian Mixture Model
计算机科学, 2015, 42(5): 286-288. https://doi.org/10.11896/j.issn.1002-137X.2015.05.058
[8] 杨国亮,周丹,张进辉.
基于SILTP纹理信息的运动目标检测算法
Moving Object Detection Algorithm Using SILTP Texture Information
计算机科学, 2014, 41(4): 302-305.
[9] 胡小冉,孙涵.
一种新的基于ViBe的运动目标检测方法
Novel Moving Object Detection Method Based on ViBe
计算机科学, 2014, 41(2): 149-152.
[10] 田洪金,战荫伟.
基于自适应分块和SSIM的运动目标检测
Moving Object Detection Based on Adaptive Image Blocking and SSIM
计算机科学, 2014, 41(2): 119-122.
[11] 孙建坤,杨若瑜.
基于颜色直方图和小波变换的视频烟雾检测
Smoke Detection in Video Based on Color Histogram and Wavelets
计算机科学, 2014, 41(12): 251-254. https://doi.org/10.11896/j.issn.1002-137X.2014.12.054
[12] 瞿中,张亢,乔高元.
MB-LBP特征提取和粒子滤波相结合的运动目标检测与跟踪算法研究
Research on Algorithm of Moving Target Detection and Tracking Based on MB-LBP Feature Extraction and Particle Filter
计算机科学, 2013, 40(12): 304-307.
[13] 张明,孟丽丽,刘丽红,齐妙.
基于分块和改进粒子滤波的运动目标检测方法
Approach of Moving Object Detection Based on Image Blocks and Improved Particle Filter Algorithm
计算机科学, 2012, 39(11): 261-263.
[14] 林庆,徐柱,王士同,詹永照.
HSV自适应混合高斯模型的运动目标检测
Moving Objects Detection of Adaptive Gaussian Mixture Models on HSV
计算机科学, 2010, 37(10): 254-256.
[15] .
一种实时的主动跟踪方法

计算机科学, 2007, 34(2): 253-255.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!