计算机科学 ›› 2019, Vol. 46 ›› Issue (6A): 385-391.

• 大数据与数据挖掘 • 上一篇    下一篇

基于时空循环卷积网络的城市区域人口流量预测

郭晟楠, 林友芳, 金文蔚, 万怀宇   

  1. 北京交通大学计算机与信息技术学院 北京100044;
    北京交通大学交通数据分析与挖掘北京市重点实验室 北京100044;
    北京交通大学综合交通运输大数据应用技术交通运输行业重点实验室 北京100044
  • 出版日期:2019-06-14 发布日期:2019-07-02
  • 通讯作者: 万怀宇(1981-),男,博士,副教授,CCF会员,主要研究方向为交通数据挖掘、社交网络分析,E-mail:hywan@bjtu.edu.cn (通信作者)。
  • 作者简介:郭晟楠(1992-),女,博士生,CCF会员,主要研究方向为时空数据挖掘、深度学习;林友芳(1971-),男,博士,教授,主要研究方向为数据挖掘、智能系统;金文蔚(1992-),男,硕士生,主要研究方向为交通数据挖掘;
  • 基金资助:
    本文受国家自然科学基金项目(61603028)资助。

Citywide Crowd Flows Prediction Based on Spatio-Temporal Recurrent Convolutional Networks

GUO Sheng-nan, LIN You-fang, JIN Wen-wei, WAN Huai-yu   

  1. School of Computer and Information Technology,Beijing Jiaotong University,Beijing 100044,China;
    Beijing Key Laboratory of Traffic Data Analysis and Mining,Beijing Jiaotong University,Beijing 100044,China;
    Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport,Beijing Jiaotong University,Beijing 100044,China
  • Online:2019-06-14 Published:2019-07-02

摘要: 城市区域人口流量的准确预测可以为交通监管和市民出行提供有效的决策支持。城市各区域人口流量同时具有时间维度上的变化规律和空间维度上的相关性,这给流量的精准预测带来了极大的挑战。文中提出了一种基于注意力机制的时空循环卷积网络(ASTRCNs)模型,可以全面地对影响区域人口流量的多种因素进行统一建模。ASTRCNs共包含3个组件,分别用于描述人口流量的短时依赖关系、日周期规律、周周期规律。在真实的北京市人口流量数据集上进行了实验,结果表明ASTRCNs模型的预测效果优于传统的时间序列预测模型以及其他现有的基于深度学习的人口流量预测模型。

关键词: 人口流量预测, 深度学习, 时空数据, 循环卷积网络

Abstract: Accurately forecasting the crowd flows in urban areas can provide effective decision-making support for traffic management and citizens’ travel.The crowd flows in each urban region have strong correlations in both temporal dimensionsand spatial dimensions.These complex factors bring great challenges to accurate predictions.A novel neural network structure named attention-based spatio-temporal recurrent convolution networks (ASTRCNs) was proposed,which can simultaneously model various factors that affect the crowd flows.ASTRCNs consists of three components,which can respectively capture the short-term dependences,the daily periodicity influence and the weekly patterns of the crowd flows.Experimental results on a real data set of crowd flows in Beijing demonstrate that the proposed ASTRCNs outperforms the classical time series methods and the existing deep-learning based prediction methods.

Key words: Crowd flows prediction, Deep learning, Recurrent convolutional networks, Spatio-Temporal data

中图分类号: 

  • TP181
[1]北京交通发展研究中心.2012北京市交通发展年度报告 [R].北京:北京交通发展研究中心,2012.
[2]SUN Z,FOX G.Traffic flow forecasting based on combination of multidimensional scaling and SVM [J].International Journal of Intelligent Transportation Systems Research,2014,12(1):20-25.
[3]JARV O,AHAS R,SALUVEER E,et al.Mobile phones in a traffic flow:a geographical perspective to evening rush hour traffic analysis using call detail records [J].PloS One,2012,7(11):e49171.
[4]JIN B,CUI Y,ZHANG F.Fusing static and roving sensor data for detecting highway traffic conditions in real time[C]∥Proc of the 40th IEEE Conference on Computer Software and Applications Conference.NJ:IEEE,2016,1:807-816.
[5]FOULADGAR M,PARCHAMI M,ELMASRI R,et al.Scalable deep traffic flow neural networks for urban traffic congestion prediction[C]∥Proc of International Joint Conference on Neural Networks.NJ:IEEE,2017:2251-2258.
[6]SHANG J,ZHENG Y,TONG W,et al.Inferring gas consumption and pollution emission of vehicles throughout a city[C]∥Proc of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2014:1027-1036.
[7]YANG B,GUO C,JENSEN C.Travel cost inference from sparse,spatio temporally correlated time series using Markov models [J].Proceedings of the VLDB Endowment,2013,6(9):769-780.
[8]ZHANG J,ZHENG Y,QI D.Deep spatio-temporal residual networks for citywide crowd flows prediction[C]∥Proc of the 31st AAAI Conference on Artificial Intelligence.California:AAAI,2017:1655-1661.
[9]ZHANG J,ZHENG Y,QI D,et al.DNN-based prediction model for spatio-temporal data[C]∥Proc of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems.New York:ACM,2016:92.
[10]HOANG M,ZHENG Y,SINGH A.FCCF:forecasting citywide crowd flows based on big data[C]∥Proc of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems.New York:ACM,2016:6.
[11]CHEN H,GRANT-MULLER S.Use of sequential learning for short-term traffic flow forecasting [J].Transportation Research Part C:Emerging Technologies,2001,9(5):319-336.
[12]HAMILTON J.Time series analysis[J].Economic Theory, 1995,11:625-630.
[13]BOX G,JENKINS G,REINSEL G,et al.Time Series Analysis:Forecasting and Control [M].Hoboken:John Wiley & Sons,2015.
[14]MOORTHY C,RATCLIFFE B.Short term traffic forecasting using time series methods [J].Transportation planning and technology,1988,12(1):45-56.
[15]LEE S,FAMBRO D.Application of subset autoregressive integrated moving average model for short-term freeway traffic volume forecasting [J].Transportation Research Record:Journal of the Transportation Research Board,1999,1678:179-188.
[16]WILLIAMS B,HOEL L.Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process:Theoretical basis and empirical results [J].Journal of Transportation Engineering,2003,129(6):664-672.
[17]VAN D,DOUGHERTY M,WATSON S.Combining Kohonen maps with ARIMA time series models to forecast traffic flow [J].Transportation Research Part C:Emerging Technologies,1996,4(5):307-318.
[18]KAMARIANAKIS Y,PRASTACOS P.Forecasting traffic flow conditions in an urban network:Comparison of multivariate and univariate approaches [J].Transportation Research Record:Journal of the Transportation Research Board,2003,1857:74-84.
[19]KAMARIANAKIS Y,PRASTACOS P.SpaceCtime modeling of traffic flow [J].Computers and Geosciences,2005,31(2):119-133.
[20]SMOLA A,SCHÖLKOPF B.A tutorial on support vector re-gression [J].Statistics and computing,2004,14(3):199-222.
[21]WU C,HO J,LEE D.Travel-time prediction with support vector regression [J].IEEE Transactions on Intelligent Transportation Systems,2004,5(4):276-281.
[22]ZHANG Y,LIU Y.Traffic forecasting using least squares support vector machines [J].Transportmetrica,2009,5(3):193-213.
[23]WANG J,SHI Q.Short-term traffic speed forecasting hybrid model based on chaos-wavelet analysis-support vector machine theory [J].Transportation Research Part C:Emerging Technologies,2013,27:219-232.
[24]YIN H,WONG S,XU J,et al.Urban traffic flow prediction using a fuzzy-neural approach [J].Transportation Research Part C:Emerging Technologies,2002,10(2):85-98.
[25]ZHENG W,LEE D,SHI Q.Short-term freeway traffic flow prediction:Bayesian combined neural network approach [J].Journal of transportation engineering,2006,132(2):114-121.
[26]WU C,HO J,LEE D.Travel-time prediction with support vector regression [J].IEEE Transactions on Intelligent Transportation Systems,2004,5(4):276-281.
[27]KRIZHEVSKY A,SUTSKEVER I,HINTON G.Imagenet classification with deep convolutional neural networks[C]∥Proc of the 26th Annual Conference on Neural Information Processing Systems.Massachusetts:MIT Press,2012:1097-1105.
[28]LECUN Y,BENGIO Y,HINTON G.Deep learning [J].Nature,2015,521(7553):436.
[29]LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based learning applied to document recognition [J].Proceedings of the IEEE,1998,86(11):2278-2324.
[30]WILLIAMS R,ZIPSER D.A learning algorithm for continually running fully recurrent neural networks [J].Neural Computation,1989,1(2):270-280.
[31]SUTSKEVER I,VINYALS O,LE Q.Sequence to sequence learning with neural networks[C]∥Proc of the 28th Annual Conference on Neural Information Processing Systems.Massachusetts:MIT Press,2014:3104-3112.
[32]HOCHREITER S,SCHMIDHUBER J.Long short-term memory [J].Neural Computation,1997,9(8):1735-1780.
[33]SUTSKEVER I,MARTENS J,HINTON G.Generating text with recurrent neural networks[C]∥Proc of the 28th International Conference on Machine Learning.New York:ACM,2011:1017-1024.
[34]VINYALS O,RAVURI S,POVEY D.Revisiting recurrent neural networks for robust ASR[C]∥Proc of 2012 IEEE International Conference on Acoustics,Speech and Signal Processing.NJ:IEEE,2012:4085-4088.
[35]BAHDANAU D,CHO K,BENGIO Y.Neural machine translation by jointly learning to align and translate [EB/OL].(2016-05-19)[2018-07-05].https://arxiv.org/abs/1409.0473ö
[36]ZHAO Z,CHEN W,WU X,et al.LSTM network:a deep learning approach for short-term traffic forecast [J].IET Intelligent Transport Systems,2017,11(2):68-75.
[37]KINGMA D,BA J.Adam:A Method for Stochastic Optimization[C]∥Proc of the 3rd International Conference for Learning Representations.2015.
[1] 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺.
时序知识图谱表示学习
Temporal Knowledge Graph Representation Learning
计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204
[2] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[3] 汤凌韬, 王迪, 张鲁飞, 刘盛云.
基于安全多方计算和差分隐私的联邦学习方案
Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy
计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108
[4] 黎嵘繁, 钟婷, 吴劲, 周帆, 匡平.
基于时空注意力克里金的边坡形变数据插值方法
Spatio-Temporal Attention-based Kriging for Land Deformation Data Interpolation
计算机科学, 2022, 49(8): 33-39. https://doi.org/10.11896/jsjkx.210600161
[5] 王剑, 彭雨琦, 赵宇斐, 杨健.
基于深度学习的社交网络舆情信息抽取方法综述
Survey of Social Network Public Opinion Information Extraction Based on Deep Learning
计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099
[6] 郝志荣, 陈龙, 黄嘉成.
面向文本分类的类别区分式通用对抗攻击方法
Class Discriminative Universal Adversarial Attack for Text Classification
计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077
[7] 姜梦函, 李邵梅, 郑洪浩, 张建朋.
基于改进位置编码的谣言检测模型
Rumor Detection Model Based on Improved Position Embedding
计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046
[8] 孙奇, 吉根林, 张杰.
基于非局部注意力生成对抗网络的视频异常事件检测方法
Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection
计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061
[9] 侯钰涛, 阿布都克力木·阿布力孜, 哈里旦木·阿布都克里木.
中文预训练模型研究进展
Advances in Chinese Pre-training Models
计算机科学, 2022, 49(7): 148-163. https://doi.org/10.11896/jsjkx.211200018
[10] 周慧, 施皓晨, 屠要峰, 黄圣君.
基于主动采样的深度鲁棒神经网络学习
Robust Deep Neural Network Learning Based on Active Sampling
计算机科学, 2022, 49(7): 164-169. https://doi.org/10.11896/jsjkx.210600044
[11] 苏丹宁, 曹桂涛, 王燕楠, 王宏, 任赫.
小样本雷达辐射源识别的深度学习方法综述
Survey of Deep Learning for Radar Emitter Identification Based on Small Sample
计算机科学, 2022, 49(7): 226-235. https://doi.org/10.11896/jsjkx.210600138
[12] 胡艳羽, 赵龙, 董祥军.
一种用于癌症分类的两阶段深度特征选择提取算法
Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification
计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092
[13] 程成, 降爱莲.
基于多路径特征提取的实时语义分割方法
Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction
计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157
[14] 刘伟业, 鲁慧民, 李玉鹏, 马宁.
指静脉识别技术研究综述
Survey on Finger Vein Recognition Research
计算机科学, 2022, 49(6A): 1-11. https://doi.org/10.11896/jsjkx.210400056
[15] 孙福权, 崔志清, 邹彭, 张琨.
基于多尺度特征的脑肿瘤分割算法
Brain Tumor Segmentation Algorithm Based on Multi-scale Features
计算机科学, 2022, 49(6A): 12-16. https://doi.org/10.11896/jsjkx.210700217
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!