计算机科学 ›› 2022, Vol. 49 ›› Issue (9): 202-207.doi: 10.11896/jsjkx.220300277

• 人工智能 • 上一篇    下一篇

基于Key-Value关联记忆网络的知识图谱问答方法

饶志双1, 贾真1, 张凡1,2, 李天瑞1,2,3   

  1. 1 西南交通大学计算机与人工智能学院 成都 611756
    2 四川省制造业产业链协同与信息化支撑技术重点实验室 成都 611756
    3 综合交通大数据应用技术国家工程实验室 成都 611756
  • 收稿日期:2022-03-30 修回日期:2022-06-08 出版日期:2022-09-15 发布日期:2022-09-09
  • 通讯作者: 李天瑞(trli@swjtu.edu.cn)
  • 作者简介:(zhishuangrao@163.com)
  • 基金资助:
    国家自然科学基金(62176221)

Key-Value Relational Memory Networks for Question Answering over Knowledge Graph

RAO Zhi-shuang1, JIA Zhen1, ZHANG Fan1,2, LI Tian-rui1,2,3   

  1. 1 School of Computing and Artificial Intelligence,Southwest Jiaotong University,Chengdu 611756,China
    2 Manufacturing Industry Chains Collaboration and Information Support Technology Key Laboratory of Sichuan Province,Chengdu 611756,China
    3 National Engineering Laboratory of Integrated Transportation Big Data Application Technology,Chengdu 611756,China
  • Received:2022-03-30 Revised:2022-06-08 Online:2022-09-15 Published:2022-09-09
  • About author:RAO Zhi-shuang,born in 1996,postgraduate.His main research interests include natural language process and knowledge based question answering.
    LI Tian-rui,born in 1969,Ph.D,professor,Ph.D supervisor,is a distinguished member of China Computer Federation.His main research interests include big data intelligence,rough sets and granular computing.
  • Supported by:
    National Natural Science Foundation of China(62176221).

摘要: 基于知识图谱的问答(Question Answering over Knowledge Graph,KG-QA)系统通过对给定的自然语言问题进行语义解析,将问题映射到知识图谱〈主,谓,宾〉三元组,并对三元组进行推理得到问题的答案。由于自然语言具有多样性的特点,一个问题可能有多种表述,而三元组知识在知识图谱中却是规范的结构化数据,如何将自然语言问题映射到知识图谱三元组是KG-QA的难点。文中提出了一种新的Key-Value关联记忆网络,从知识图谱的角度出发,关注候选答案知识间的关联关系以及知识图谱中的知识与自然语言问题表征之间的关系。此外,在模型中引入了注意力机制,使其具有更好的可解释性。在WebQuestions数据集上进行实验,结果表明,所提方法的F1值比基于信息抽取的最优方法提高了5.9%,比基于语义分析的最优方法略有提高,验证了该方法的有效性。

关键词: 知识图谱问答, 知识图谱, 关联记忆网络, 注意力机制, 深度学习

Abstract: Question answering over knowledge graph(KG-QA) systems map the natural language question to the 〈subject,predicate,object〉 triple in the knowledge graph(KG) by semantic analysis of the given question,and infer the triple to get the answer of the question.Due to the diversity of natural languages,a question may be expressed in multiple forms but the triples in KGs are structured data in a standard form.It is challenging to map questions to triples in KGs.This paper proposes a novel Key-Value relational memory network,starting from the perspective of KGs,and focusing on the relationship between the candidate answer knowledge and the relationship between the knowledge in KGs and the question representations.In addition,the attention mechanism is applied in the proposed model,so that it has better interpretability than other baseline models.We evaluate the method on WebQuestions benchmark.Experiment results show that,compared with the best methods based on information extraction,the F1 value of the proposed method increases by 5.9% and is slightly higher than that of the optimal methods based on semantic analysis,which verifies the effectiveness of the proposed method.

Key words: Question answering over knowledge graph, Knowledge graph, Relational memory networks, Attention mechanism, Deep learning

中图分类号: 

  • TP391
[1]BOLLACKER K,EVANS C,PARITOSH P,et al.Freebase:a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data.2008:1247-1250.
[2]SUCHANEK F M,KASNECI G,WEIKUM G.Yago:a core of semantic knowledge[C]//Proceedings of the 16th International Conference on World Wide Web.2007:697-706.
[3]YAO X,VAN DURME B.Information extraction over struc-tured data:question answering with freebase[C]//Proceedings of the 52nd Annual Meeting of the Association for ComputationalLinguistics(Volume 1:Long Papers).2014:956-966.
[4]DONG L,WEI F,ZHOU M,et al.Question answering overfreebase with multi-column convolutional neural networks[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing(Volume 1:Long Papers).2015:260-269.
[5]LECUN Y,BENGIO Y.Convolutional networks for images,speech,and time series[J].The Handbook of Brain Theory and Neural Networks,1995,3361(10):1995.
[6]ZHANG S,FENG Y,HUANG S,et al.Semantic interpretation of superlative expressionsvia structured knowledge bases[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing(Volume 2:Short Papers).2015:225-230.
[7]WESTON J,CHOPRA S,BORDES A.Memory Networks[J].arXiv:1410.3916,2015.
[8]MILLER A,FISCH A,DODGE J,et al.Key-Value MemoryNetworks for Directly Reading Documents[J].arXiv:1606.03126,2016.
[9]TUNSTALL-PEDOE W.True knowledge:Open-domain ques-tion answering using structuredknowledge and inference[J].AI Magazine,2010,31(3):80-92.
[10]BERANT J,CHOU A,FROSTIG R,et al.Semantic parsing on freebase from question-answer pairs[C]//Proceedings of the 2013 International Conference on Empirical Methods in Natural Language Processing.2013:1533-1544.
[11]REDDY S,LAPATA M,STEEDMAN M.Large-scale semantic parsing without question-answer pairs[J].Transactions of the Association for Computational Linguistics,MIT Press,2014,2:377-392.
[12]HAKIMOV S,UNGER C,WALTER S,et al.Applying semantic parsing to question answering over linked data:addressing the lexical gap[C]//International Conference on Applications of Natural Language to Information Systems.2015:103-109.
[13]UNGER C,BÜHMANN L,LEHMANN J,et al.Template-based question answering over RDF data[C]//Proceedings of the 21st International Conference on World Wide Web.2012:639-648.
[14]DONG L,LAPATA M.Language to logical form with neural attention[J].arXiv:1601.01280,2016.
[15]CUI W,XIAO Y,WANG H,et al.KBQA:learning question answering over QA corpora and knowledge bases[J].arXiv:1903.02419,2019.
[16]BORDES A,CHOPRA S,WESTON J.Question answering withsubgraph embeddings[J].arXiv:1406.3676,2014.
[17]BORDES A,WESTON J,USUNIER N.Open question answe-ring with weakly supervised embedding models[C]//Joint European Conference on Machine Learning and Knowledge Discovery in Databases.2014:165-180.
[18]HE X,GOLUB D.Character-level question answering with at-tention[C]//Proceedings of the 2016 International Conference on Empirical Methods in Natural Language Processing.2016:1598-1607.
[19]HUANG X,ZHANG J,LI D,et al.Knowledge graph embedding based question answering[C]//Proceedings of the Twelfth ACM International Conference on Web Search and Data Mi-ning.2019:105-113.
[20]SAXENA A,TRIPATHI A,TALUKDAR P.Improving Multi-hop Question Answering over Knowledge Graphs using Know-ledge Base Embeddings[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.Online:Association for Computational Linguistics,2020:4498-4507.
[21]LU Q,PAN Z S,XIE J.Bidirectional Attention Question An-swering Model Combining Knowledge Representation Learning[J].Computer Engineering and Applications,2021,57(23):171-177.
[22]LIU X L,HAN F,WANG Z J.Joint Question Answering Model Based on Knowledge Representation[J].Computer Science,2021,48(6):241-245.
[23]BAO J,DUAN N,YANZ,et al.Constraint-based question answering with knowledge graph[C]//Proceedings of the 26th International Conference on Computational Linguistics:Technical Papers.2016:2503-2514.
[24]BERANT J,LIANG P.Semantic parsing via paraphrasing[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers).2014:1415-1425.
[25]BAST H,HAUSSMANN E.More accurate question answering on freebase[C]//Proceedings of the 24th ACM International on Conference on Informationand Knowledge Management.2015:1431-1440.
[26]ABUJABAL A,YAHYA M,RIEDEWALD M,et al.Automated template generation for question answering over knowledge graphs[C]//Proceedings of the 26th International Conference on World Wide Web.2017:1191-1200.
[27]HU S,ZOU L,YU J X,et al.Answering natural language questions by subgraph matching over knowledge graphs[J].IEEE Transactions on Knowledge and Data Engineering,2017,30(5):824-837.
[28]YANG M C,DUAN N,ZHOU M,et al.Joint relational embeddings for knowledge-based question answering[C]//Proceedings of the 2014 International Conference on Empirical Methods in Natural Language Processing.2014:645-650.
[29]YAMADA I,ASAI A,SAKUMA J,et al.Wikipedia2Vec:An efficient toolkit for learning and visualizing the embeddings of words and entities from Wikipedia[J].arXiv:1812.06280,2018.
[30]BORDES A,USUNIER N,CHOPRA S,et al.Large-scale simple question answering with memory networks[J].arXiv:1506.02075,2015.
[31]XU K,REDDY S,FENG Y,et al.Question answering on freebase via relation extraction and textual evidence[J].arXiv:1603.00957,2016.
[32]HAO Y,ZHANG Y,LIU K,et al.An end-to-end model forquestion answering over knowledge base with cross-attention combining global knowledge[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers).2017:221-231.
[33]XU K,LAI Y,FENG Y,et al.Enhancing Key-Value Memory Neural Networks for Knowledge Based Question Answering[C]//Proceedings of the 2019 Conference of the North.Minneapolis,Minnesota:Association for Computational Linguistics,2019:2937-2947.
[1] 吴子仪, 李邵梅, 姜梦函, 张建朋.
基于自注意力模型的本体对齐方法
Ontology Alignment Method Based on Self-attention
计算机科学, 2022, 49(9): 215-220. https://doi.org/10.11896/jsjkx.210700190
[2] 孔世明, 冯永, 张嘉云.
融合知识图谱的多层次传承影响力计算与泛化研究
Multi-level Inheritance Influence Calculation and Generalization Based on Knowledge Graph
计算机科学, 2022, 49(9): 221-227. https://doi.org/10.11896/jsjkx.210700144
[3] 汤凌韬, 王迪, 张鲁飞, 刘盛云.
基于安全多方计算和差分隐私的联邦学习方案
Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy
计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108
[4] 周芳泉, 成卫青.
基于全局增强图神经网络的序列推荐
Sequence Recommendation Based on Global Enhanced Graph Neural Network
计算机科学, 2022, 49(9): 55-63. https://doi.org/10.11896/jsjkx.210700085
[5] 戴禹, 许林峰.
基于文本行匹配的跨图文本阅读方法
Cross-image Text Reading Method Based on Text Line Matching
计算机科学, 2022, 49(9): 139-145. https://doi.org/10.11896/jsjkx.220600032
[6] 周乐员, 张剑华, 袁甜甜, 陈胜勇.
多层注意力机制融合的序列到序列中国连续手语识别和翻译
Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion
计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026
[7] 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺.
时序知识图谱表示学习
Temporal Knowledge Graph Representation Learning
计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204
[8] 熊丽琴, 曹雷, 赖俊, 陈希亮.
基于值分解的多智能体深度强化学习综述
Overview of Multi-agent Deep Reinforcement Learning Based on Value Factorization
计算机科学, 2022, 49(9): 172-182. https://doi.org/10.11896/jsjkx.210800112
[9] 王剑, 彭雨琦, 赵宇斐, 杨健.
基于深度学习的社交网络舆情信息抽取方法综述
Survey of Social Network Public Opinion Information Extraction Based on Deep Learning
计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099
[10] 郝志荣, 陈龙, 黄嘉成.
面向文本分类的类别区分式通用对抗攻击方法
Class Discriminative Universal Adversarial Attack for Text Classification
计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077
[11] 姜梦函, 李邵梅, 郑洪浩, 张建朋.
基于改进位置编码的谣言检测模型
Rumor Detection Model Based on Improved Position Embedding
计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046
[12] 秦琪琦, 张月琴, 王润泽, 张泽华.
基于知识图谱的层次粒化推荐方法
Hierarchical Granulation Recommendation Method Based on Knowledge Graph
计算机科学, 2022, 49(8): 64-69. https://doi.org/10.11896/jsjkx.210600111
[13] 朱承璋, 黄嘉儿, 肖亚龙, 王晗, 邹北骥.
基于注意力机制的医学影像深度哈希检索算法
Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism
计算机科学, 2022, 49(8): 113-119. https://doi.org/10.11896/jsjkx.210700153
[14] 孙奇, 吉根林, 张杰.
基于非局部注意力生成对抗网络的视频异常事件检测方法
Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection
计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061
[15] 闫佳丹, 贾彩燕.
基于双图神经网络信息融合的文本分类方法
Text Classification Method Based on Information Fusion of Dual-graph Neural Network
计算机科学, 2022, 49(8): 230-236. https://doi.org/10.11896/jsjkx.210600042
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!