计算机科学 ›› 2019, Vol. 46 ›› Issue (11A): 421-427.

• 信息安全 • 上一篇    下一篇

基于改进人工蜂群算法的Android恶意应用检测

徐开勇, 肖警续, 郭松, 戴乐育, 段佳良   

  1. (网络空间安全教研室(信息工程大学) 郑州450001)
  • 出版日期:2019-11-10 发布日期:2019-11-20
  • 通讯作者: 肖警续(1994-),男,硕士,主要研究方向为Android恶意应用检测,E-mail:345371975@qq.com。
  • 作者简介:徐开勇(1963-),男,硕士,研究员,主要研究方向为信息安全、可信计算,E-mail:345371975@qq.com。
  • 基金资助:
    本文高安全等级移动终端项目资助。

Android Malicious Application Detection Based on Improved Artificial Bee Colony Algorithms

XU Kai-yong, XIAO Jing-xu, GUO Song, DAI Le-yu, DUAN Jia-liang   

  1. (Country Network Space Security Teaching and Research Room (Information Engineering University),Zhengzhou 450001,China)
  • Online:2019-11-10 Published:2019-11-20

摘要: 随着互联网和移动终端的飞速发展,手机中存储着很多重要的信息,要保证这些信息安全不被泄露的一个重要方法就是对手机中的恶意应用进行检测与处理。在对恶意应用进行检测前需要对样本进行特征提取,而如何在众多特征中进行有效的选取是恶意应用检测中一个至关重要的过程。文中针对Android平台的应用,参考相关的Android恶意检测方法,建立了一个基于改进人工蜂群算法的Android恶意应用检测模型,通过对特征进行有效的选择,最终得到使分类结果最优的特征组合,从而提高对Android恶意应用检测的检测性能。在静态和动态条件下分别对Android应用特征进行提取,通过多种分类算法对恶意应用检测模型进行检验,结果证实提出的基于改进人工蜂群算法的Android恶意应用检测方法具有可行性与优越性。

关键词: 恶意应用检测, 人工蜂群, 特征选取, 特征优化

Abstract: With the rapid development of the Internet and mobile terminals,there are a lot of important information stored in mobile phones.An important way to ensure that these information is not compromised is to detect and process malicious applications in mobile phones.Before detecting malicious applications,feature extraction is required for samples,and how to effectively select features among many features is a crucial process in malicious application detection.Based on the application of Android platform,this paper established an Android malicious application detection model based on the improved artificial bee colony algorithm.By effectively selecting the features,the feature combination that optimizes the classification results is finally obtained,thereby improving the detection performance of Android malicious application detection.The Android application features are extracted under static and dynamic conditions respectively.The malicious application detection model is tested by various classification algorithms.It is proved that the proposed malicious malicious detection method based on the improved artificial bee colony algorithm has the feasibility and superiority.

Key words: Artificial bee colony classification, Feature optimization, Feature selection, Malicious application detection

中图分类号: 

  • TP311
[1]Mobile Operating System Market Share Worldwide[OL].http://gs.statcounter.com/os-market-share.
[2]Google Play[OL].https://play.google.com.
[3]《2018年Android恶意软件专题报告》[OL].https://www.anquanke.com/post/id/171110.
[4]QIN Z Y,WANG Z Y,WU F B,et al.Android malware detection based on multi-level signature matching[J].Application Research of Computers,2016,33(3):891-895.
[5]NING Z,SHAO D C,et al.Android Static Analysis Based on Signature and Data Flow Pattern Mining[J].Computer Science,2017,44(S2).
[6]YANG H,ZHANG Y Q,HU Y P,et al.Android malware detection method based on permission sequential pattern mining algorithm[J].Journal on Communications,2017,34(S1):106-115.
[7]NAVARRO L C, NAVARRO A K W,GRÉGIO A,et al.Leveraging Ontologies and Machine-learning Techniques for Malware Analysis into Android Permissions Ecosystems[J].Computers & Security,2018,78:429-453.
[8]KABAKUS A T,DOGRU I A.An in-depth analysis of Android malware using hybrid techniques[J].Digital Investigation,2018,24(3):25-33.
[9]YANG H,ZHANG Y Q,HU Y P,et al.Malware Behavior Detection System of Android Applications Based on Multi-Class Features[J].Chinese Journal of Computers,2014,37(1):15-27.
[10]马建光,姜巍.大数据的概念,特征及其应用[J].国防科技,2013(2):10-17.
[11]ENCK W,GILBERT P,HAN S,et al.TaintDroid:an information-flow tracking system for realtime privacy monitoring on smartphones[J].ACM Transactions on Computer Systems (TOCS),2014,32(2):5.
[12]Android SDK[OL].https://android-sdk.en.softonic.com.
[13]Androlyze.py的使用方法[OL].https://blog.csdn.net/u013107656/article/details/51790153.
[14]APImonitor-DroidBox的原理分析[OL].https://code.google.com/p/droidbox/wiki/APIMonitor.
[15]AKBARI R,HEDAYATZADEH R,ZIARATI K,et al.Amulti-objective artificial bee colony algorithm[J].Swarm and Evolutionary Computation,2012,2:39-52. [16]PALANISAMY S,KANMANI S.Artificial bee colony approach for optimizing feature selection[J].International Journal of Computer Science Issues (IJCSI),2012,9(3):432.
[17]HANCER E,XUE B,ZHANG M,et al.Paretofront feature selection based on artificial bee colony optimization[J].Information Sciences,2018,422:462-479.
[18]YUAN Z,LU Y,XUE Y.Droiddetector:android malware characterization and detection using deep learning[J].清华大学学报自然科学版(英文版),2016,21(1):114-123.
[19]SARACINO A,SGANDURRA D,DINI G,et al.MADAM:Effective and Efficient Behavior-based Android Malware Detection and Prevention[C]∥IEEE Transactions on Dependable and Secure Computing.2016.
[20]HANCER E,XUE B,ZHANG M,et al.Pareto front feature selection based on artificial bee colony optimization[J].Information Sciences,2018,422:462-479.
[1] 毋琳, 白澜, 孙梦伟, 郭拯危.
基于特征优化的SAR图像水华识别方法
Algal Bloom Discrimination Method Using SAR Image Based on Feature Optimization Algorithm
计算机科学, 2021, 48(9): 194-199. https://doi.org/10.11896/jsjkx.200800142
[2] 石克翔, 保利勇, 丁洪伟, 官铮, 赵雷.
基于生成时间序列均匀优化的混沌人工蜂群算法
Chaos Artificial Bee Colony Algorithm Based on Homogenizing Optimization of Generated Time Series
计算机科学, 2021, 48(7): 270-280. https://doi.org/10.11896/jsjkx.200800087
[3] 郑友莲, 雷德明, 郑巧仙.
求解高维多目标调度的新型人工蜂群算法
Novel Artificial Bee Colony Algorithm for Solving Many-objective Scheduling
计算机科学, 2020, 47(7): 186-191. https://doi.org/10.11896/jsjkx.190600089
[4] 郭佳.
基于改进的人工神经网络对存储系统性能进行预测的方法
Method of Predicting Performance of Storage System Based on Improved Artificial Neural Network
计算机科学, 2019, 46(6A): 52-55.
[5] 穆晓芳, 邓红霞, 李晓宾, 赵鹏.
基于人工蜂群算法的两阶段图像隐写分析算法
Two-phase Image Steganalysis Algorithm Based on Artificial Bee Colony Algorithm
计算机科学, 2019, 46(6): 174-179. https://doi.org/10.11896/j.issn.1002-137X.2019.06.026
[6] 谢念念, 曾凡平, 周明松, 秦晓霞, 吕成成, 陈钊.
多维敏感特征的Android恶意应用检测
Android Malware Detection with Multi-dimensional Sensitive Features
计算机科学, 2019, 46(2): 95-101. https://doi.org/10.11896/j.issn.1002-137X.2019.02.015
[7] 符晓.
云计算中基于共享机制和群体智能优化算法的任务调度方案
Task Scheduling Scheme Based on Sharing Mechanism and Swarm Intelligence
Optimization Algorithm in Cloud Computing
计算机科学, 2018, 45(6A): 290-294.
[8] 范兴刚, 刘涛, 胡凤丹, 蒿翔.
一种延长目标覆盖网络寿命的群智能算法
Swarm Intelligence Algorithm for Prolonging Target Coverage Network Lifetime
计算机科学, 2018, 45(12): 86-91. https://doi.org/10.11896/j.issn.1002-137X.2018.12.013
[9] 火久元, 王野, 胡卓娅.
人工蜂群算法的收敛性分析:数形结合
Convergence Analysis of Artificial Bee Colony Algorithm:Combination of Number and Shape
计算机科学, 2018, 45(10): 212-216. https://doi.org/10.11896/j.issn.1002-137X.2018.10.039
[10] 焦娜.
基于软K段主曲线的LPR字符特征的提取方法
Extraction Method of LPR Characters Features Based on Soft K-segments Algorithm for Principal Curves
计算机科学, 2017, 44(9): 49-52. https://doi.org/10.11896/j.issn.1002-137X.2017.09.009
[11] 叶益林,吴礼发,颜慧颖.
一种基于双层语义的Android原生库安全性检测方法
Two-layer Semantics-based Security Detection Approach for Android Native Libraries
计算机科学, 2017, 44(6): 161-167. https://doi.org/10.11896/j.issn.1002-137X.2017.06.027
[12] 杨华,张杭,张江,杨柳,李炯.
初始分离矩阵优化的在线盲源分离算法
Initial Separating-matrix Optimized Online Blind Source Separation Algorithm
计算机科学, 2016, 43(Z6): 265-267. https://doi.org/10.11896/j.issn.1002-137X.2016.6A.063
[13] 邢熔华,黄海燕.
基于改进全局人工蜂群算法的WSN节点定位研究
Researches on Wireless Sensor Network Localization Based on Improved Gbest-guided Artificial Bee Colony Algorithm
计算机科学, 2016, 43(12): 273-276. https://doi.org/10.11896/j.issn.1002-137X.2016.12.050
[14] 杜京义,刘文恵.
基于颜色和纹理特征提取的接地网腐蚀等级分析
Analysis of Grounding Grid Corrosion Grade Based on Extraction of Color and Texture
计算机科学, 2015, 42(Z11): 169-172.
[15] 李仁兴,丁力.
基于云模型蜂群算法的无人机航迹规划
Path Planning for Unmanned Air Vehicles Using Improved Artificial Bee Colony Algorithm
计算机科学, 2015, 42(Z11): 89-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!