计算机科学 ›› 2020, Vol. 47 ›› Issue (2): 175-179.doi: 10.11896/jsjkx.181202361

• 人工智能 • 上一篇    下一篇

基于通信信号时频特性的卷积神经网络调制识别

徐茂,侯进,吴佩军,刘雨灵,吕志良   

  1. (西南交通大学信息科学与技术学院 成都611756)
  • 收稿日期:2018-12-19 出版日期:2020-02-15 发布日期:2020-03-18
  • 通讯作者: 侯进(jhou@swjtu.edu.cn)
  • 基金资助:
    浙江大学CAD&CG国家重点实验室开放课题(A1823);成都市科技项目(2015-HM01-00050-SF)

Convolutional Neural Networks Based on Time-Frequency Characteristics for Modulation Classification

XU Mao,HOU Jin,WU Pei-jun,LIU Yu-ling,LV Zhi-liang   

  1. (School of Information Science and Technology,Southwest Jiaotong University,Chengdu 611756,China)
  • Received:2018-12-19 Online:2020-02-15 Published:2020-03-18
  • About author:XU Mao,born in 1993,postgraduate.His main research interests include machine learning,deep learning and artificial intelligence;HOU Jin,born in 1969,Ph.D.Her main research interests include machine learning and so on.
  • Supported by:
    This work was supported by the Research on Modulation Recognition Technology based on Deep Learning, CAD&CG National key Laboratory of Zhejiang University (A1823) and Automatic detection and identification of lane lines and signs of intelligent vehicles, Chengdu science and technology project (2015-HM01-00050-SF).

摘要: 在通信环境日益密集、信号调制样式层出不穷的情况下,信号的调制识别变得愈加困难。寻求一种高精度、时效性好的自动调制识别新方法,对无线电通信应用领域有重大意义。对此,文中提出了一种结合通信信号时频特性的卷积神经网络(Convolutional Neural Network Based on Time-Frequency Characteristics,TFC-CNN)调制识别算法。首先,采集大量调制信号,将信号的时频特征通过短时傅里叶变换转换成图像特征,并将其作为网络的输入;然后,设计一种特征提取能力更强、参数更少的卷积神经网络,通过改进网络中不同层的连结方式来增加网络的特征提取能力,同时通过减小卷积核的尺度、使用全局均值池化层来减少模型参数,提高了模型的时效性;最后,在网络中添加批归一化(Batch Normalization,BN)层,在增加模型稳定性的同时防止模型出现过拟合。实验结果表明,所提算法在参数和训练时间上比传统方法明显减少,同时有更高的准确率,体现了所提算法的优越性。

关键词: 调制识别, 短时傅里叶变换, 卷积神经网络, 时频特性

Abstract: In the situation of increasingly dense communication environment and endless modulation patterns of signals,the modu-lation classification becomes more and more difficult.It is very important for the application of radio communication to seek a new method of automatic modulation classification (AMC) with high accuracy and good timeliness.Based on this,a novel convolutio-nal neural network based ontime-frequency characteristics (TFC-CNN) for AMC was proposed.Firstly,a large number of modulation signals are collected,and the time-frequency features of the signals are converted into image features by short-time Fourier transform,which are used as the input of the network.Secondly,a convolutional neural network with stronger feature extraction ability and fewer parameters is designed,and the feature extraction ability of the network is enhanced by improving the connection mode of different layers in the network.At the same time,the model parameters are reduced by reducing the scale of the convolution kernel and using the global average pooling,the timeliness of the model is improved.Finally,adding batch normalization layers to network can increase the stability of the model and prevent overfitting.The experimentresults show that the proposed algorithm is significantly lessin parameters and training time than the traditional methods,and has higher accuracy,which shows the superiority of the proposed algorithm.

Key words: Convolutional neural network, Modulation classification, Short-time Fourier transform, Time frequency characteristics

中图分类号: 

  • TP183
[1]MAREY M,DOBRE O A.Blind Modulation Classification Algorithm for Single and Multiple-Antenna Systems Over Frequency-Selective channels[J].IEEE Signal Processing Letters,2014,21(9):1098-1102.
[2]AMURU S D,DA SILVA C R C M.A Blind Preprocessor for Modulation Classification Applications in Frequency-Selective Non-Gaussian Channels[J].IEEE Transactions on Communications,2015,63(1):156-169.
[3]ZHU Z,NANDI A K.Blind Digital Modulation Classification Using Minimum Distance Centroid Estimator and Non-Parametric Likelihood Function[J].IEEE Transactions on Wireless Communications,2014,13(8):4483-4494.
[4]OZDEMIR O,WIMALAJEEWA T,DULEK B,et al.Asyn-chronous Linear Modulation Classification with Multiple Sensors via Generalized EM Algorithm[J].IEEE Transactions on Wireless Communications,2015,14(11):6389-6400.
[5]ASLAM M W,ZHU Z,NANDI A K.Automatic Modulation Classification Using Combination of Genetic Programming and KNN[J].IEEE Transactions on Wireless Communications,2012,11(8):2742-2750.
[6]HAN L,XUE H,GAO F,et al.Low Complexity Automatic Modulation Classification Based on Order Statistics[C]∥Vehicu-lar Technology Conference.Montreal:IEEE Computer Society Press,2016:1-5.
[7]YANG F,YANG L,WANG D,et al.Method of Modulation Recognition Based on Combination Algorithm of K-Means Clustering and Grading Training SVM[J].China Communications,2018,15(12):55-63.
[8]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet Classification with Deep Convolutional Neural Networks[C]∥Proceedings of the 25th International Conference on Neural Information Processing Systems.New York:ACM,2012:1097-1105.
[9]SIMONYAN K,ZISSERMANZ A.Very Deep Convolutional Networks for Large-Scale Image Recognition[J].arXiv:1409.1556,2014.
[10]SZEGEDY C,LIU W,JIA Y Q,et al.Going Deeper with Convolutions[C]∥Proceedings of the IEEE Conference onComputerVision and Pattern Recognition.Los Alamitos:IEEE ComputerSociety,2015:1-9.
[11]CHOLLET F.Xception:Deep Learning with Depthwise Separable Convolutions[J].arXiv:1610.02357,2016.
[12]HUANG G,LIU Z,WEINBERGER K Q,et al.Densely Connected Convolutional Networks[J].arXiv:1608.06993,2016.
[13]WEST N E,O’SHEA T J.Deep Architectures for Modulation Recognition[C]∥IEEE International Symposium on Dynamic Spectrum Access Networks.Piscataway:IEEE,2017:1-6.
[14]WEST N E,HARWELL K,MCCALL B.DFT Signal Detection and Channelization With a Deep Neural Network Modulation Classifier[C]∥IEEE International Symposium on Dynamic Spectrum Access Networks.Piscataway:IEEE,2017:1-3.
[15]VANHOY G,THURSTON N,BURGER A,et al.Hierarchical Modulation Classification Using Deep Learning[C]∥Military Communications Conference.Los Angeles:IEEE,2018:20-25.
[16]O’SHEA T J,CORGAN J,CLANCY T C.Convolutional Radio Modulation Recognition Networks[C]∥International Conference on Engineering Applications of Neural Networks.Berlin:Springer,2016:213-226.
[17]HAUSER S C,HEADLEY W C,MICHAELS A J.Signal Detection Effects on Deep Neural Networks Utilizing Raw IQ for Modulation Classification[C]∥Military Communications Conference.Baltimore:IEEE,2017:121-127.
[18]PENG S,JIANG H,WANG H,et al.Modulation Classification Using Convolutional Neural Network Based Deep Learning Model[C]∥Wireless and Optical Communication Conference.Newark:IEEE Computer Society,2017:1-5.
[19]ZHANG J,LI Y,YIN J.A NovelModulation Classification Method for Frequency Modulation Signals Based on the Time-Frequency Distribution and CNN[J].IET Radar,Sonar & Navigation,2017,12(2):244-249.
[20]NAIR V,HINTON G E.Rectified Linear Units Improve Re-stricted Boltzmann Machines[C]∥International Conference on Machine Learning.Madison:Omni,2010:807-814.
[21]IOFFE S,SZEGEDY C.Batch Normalization:Accelerating Deep Network Training by Reducing Internal Covariate Shift[C]∥Proceedingsof the 32nd International Conference on Machine Learning.New York:ICML,2015:448-456.
[22]HE K M,ZHANG X Y,REN S Q,et al.Deep Residual learning for Image Recognition[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE,2016:770-778.
[23]HE K M,ZHANG X Y,REN S Q,et al.Delving Deep into Rec-tifiers:Surpassing Human-Level Performance on Imagenet Classification[C]∥Proceedings of the IEEE InternationalConfe-rence on Computer Vision.Los Alamitos:IEEE Computer Society,2015:1026-1034.
[1] 周乐员, 张剑华, 袁甜甜, 陈胜勇.
多层注意力机制融合的序列到序列中国连续手语识别和翻译
Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion
计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026
[2] 李宗民, 张玉鹏, 刘玉杰, 李华.
基于可变形图卷积的点云表征学习
Deformable Graph Convolutional Networks Based Point Cloud Representation Learning
计算机科学, 2022, 49(8): 273-278. https://doi.org/10.11896/jsjkx.210900023
[3] 陈泳全, 姜瑛.
基于卷积神经网络的APP用户行为分析方法
Analysis Method of APP User Behavior Based on Convolutional Neural Network
计算机科学, 2022, 49(8): 78-85. https://doi.org/10.11896/jsjkx.210700121
[4] 朱承璋, 黄嘉儿, 肖亚龙, 王晗, 邹北骥.
基于注意力机制的医学影像深度哈希检索算法
Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism
计算机科学, 2022, 49(8): 113-119. https://doi.org/10.11896/jsjkx.210700153
[5] 檀莹莹, 王俊丽, 张超波.
基于图卷积神经网络的文本分类方法研究综述
Review of Text Classification Methods Based on Graph Convolutional Network
计算机科学, 2022, 49(8): 205-216. https://doi.org/10.11896/jsjkx.210800064
[6] 张颖涛, 张杰, 张睿, 张文强.
全局信息引导的真实图像风格迁移
Photorealistic Style Transfer Guided by Global Information
计算机科学, 2022, 49(7): 100-105. https://doi.org/10.11896/jsjkx.210600036
[7] 戴朝霞, 李锦欣, 张向东, 徐旭, 梅林, 张亮.
基于DNGAN的磁共振图像超分辨率重建算法
Super-resolution Reconstruction of MRI Based on DNGAN
计算机科学, 2022, 49(7): 113-119. https://doi.org/10.11896/jsjkx.210600105
[8] 刘月红, 牛少华, 神显豪.
基于卷积神经网络的虚拟现实视频帧内预测编码
Virtual Reality Video Intraframe Prediction Coding Based on Convolutional Neural Network
计算机科学, 2022, 49(7): 127-131. https://doi.org/10.11896/jsjkx.211100179
[9] 徐鸣珂, 张帆.
Head Fusion:一种提高语音情绪识别的准确性和鲁棒性的方法
Head Fusion:A Method to Improve Accuracy and Robustness of Speech Emotion Recognition
计算机科学, 2022, 49(7): 132-141. https://doi.org/10.11896/jsjkx.210100085
[10] 金方焱, 王秀利.
融合RACNN和BiLSTM的金融领域事件隐式因果关系抽取
Implicit Causality Extraction of Financial Events Integrating RACNN and BiLSTM
计算机科学, 2022, 49(7): 179-186. https://doi.org/10.11896/jsjkx.210500190
[11] 张嘉淏, 刘峰, 齐佳音.
一种基于Bottleneck Transformer的轻量级微表情识别架构
Lightweight Micro-expression Recognition Architecture Based on Bottleneck Transformer
计算机科学, 2022, 49(6A): 370-377. https://doi.org/10.11896/jsjkx.210500023
[12] 王建明, 陈响育, 杨自忠, 史晨阳, 张宇航, 钱正坤.
不同数据增强方法对模型识别精度的影响
Influence of Different Data Augmentation Methods on Model Recognition Accuracy
计算机科学, 2022, 49(6A): 418-423. https://doi.org/10.11896/jsjkx.210700210
[13] 孙洁琪, 李亚峰, 张文博, 刘鹏辉.
基于离散小波变换的双域特征融合深度卷积神经网络
Dual-field Feature Fusion Deep Convolutional Neural Network Based on Discrete Wavelet Transformation
计算机科学, 2022, 49(6A): 434-440. https://doi.org/10.11896/jsjkx.210900199
[14] 杨玥, 冯涛, 梁虹, 杨扬.
融合交叉注意力机制的图像任意风格迁移
Image Arbitrary Style Transfer via Criss-cross Attention
计算机科学, 2022, 49(6A): 345-352. https://doi.org/10.11896/jsjkx.210700236
[15] 杨健楠, 张帆.
一种结合双注意力机制和层次网络结构的细碎农作物分类方法
Classification Method for Small Crops Combining Dual Attention Mechanisms and Hierarchical Network Structure
计算机科学, 2022, 49(6A): 353-357. https://doi.org/10.11896/jsjkx.210200169
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!