计算机科学 ›› 2020, Vol. 47 ›› Issue (8): 1-4.doi: 10.11896/jsjkx.200600027

所属专题: 高性能计算

• 高性能计算 • 上一篇    下一篇

并行计算学科发展历程

陈国良, 张玉杰   

  1. 南京邮电大学计算机学院 南京 210023
    国家高性能计算中心南京分中心 南京 210023
    江苏省高性能计算与智能处理工程研究中心 南京 210023
  • 出版日期:2020-08-15 发布日期:2020-08-10
  • 通讯作者: 陈国良(glchen@njupt.edu.cn)
  • 基金资助:
    南京邮电大学教学改革研究项目(JG00419JX67)

Development of Parallel Computing Subject

CHEN Guo-liang, ZHANG Yu-jie   

  1.  School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
     Nanjing Center of HPC China, Nanjing 210023, China
     Jiangsu HPC and Intelligent Processing Engineer Research Center, Nanjing 210023, China
  • Online:2020-08-15 Published:2020-08-10
  • About author:CHEN Guo-liang, born in 1938, is a member of Chinese Academy of Sciences, academic leader of non-numerical parallel algorithms in China, professor of Nanjing University of Posts and Telecommunications, Shenzhen University and University of Science and Technology of China.Director of national high performance computing center, and executive director of International High Performance Computing (Asia).
  • Supported by:
    This work was supported by the Teaching Reform Research Project of Nanjing University of Posts and Communications (JG00419JX67).

摘要: 计算科学已经与传统的理论科学和实验科学并列成为第三门科学, 它们相辅相成地推动着人类科技的发展和社会文明的进步。21世纪科学和经济上的关键问题研究前沿, 有可能通过熟练地掌握先进的计算技术并运用计算科学得到解决。高性能计算是一个国家综合国力的体现, 是支撑国家实力持续发展的关键技术之一, 在国防安全、高科技发展和国民经济建设中占有重要的战略地位。经过40多年的发展, 围绕并行计算机、并行算法和并行程序设计, 融合并行计算机体系结构、数值和非数值的并行算法设计及并行程序设计于一体, 形成了并行计算(Parallel Computing)“结构-算法-编程-应用”完整的学科体系与系统课程框架。文中回顾了作者在并行计算学科的发展方面所做的工作, 并对非数值计算中的计算方法和新型的非冯诺依曼结构计算机体系结构的研究进行了介绍。

关键词: 并行计算, 非数值计算, 高性能计算, 计算机体系结构, 学科发展

Abstract: Computational science has become the third science in parallel with traditional theoretical science and experimentalscien-ce.They complement each other and promote the development of human science and technology and the progress of social civilization.The research frontiers of key scientific and economic problems in the 21st century may be solved by computing techniques and computing science.High-performance computing is a manifestation of a country’s comprehensive national strength, and it is one of the key technologies supporting the continuous development of national strength.It has an important strategic position in national defense security, high-tech development and national economic construction.Through more than 40 years of development, we have focused on parallel computers, parallel algorithms and parallel programming, integrating parallel computer architecture, numerical and non-numerical parallel algorithm design and parallel program design, forming parallel computing “architecture-algorithm-programming-application” disciplinary system and system curriculum framework.This article reviews the work we have done in the development of parallel computing, and introduces the calculation methods in non-numerical computing and the research of new non-von Neumann structured computer architecture.

Key words: Computer architecture, High performance computing, Non-numerical computing, Parallel computing, Subject evolution

中图分类号: 

  • TP399.9
[1]CHEN G L, MIAO Q K, SUN G Z, et al.Layered models of par-
allel computation .Journal of University of Science and Technology of China, 2008(7):137-143.
[2]CHEN G L, SUN G Z, XU Y, et al.Methodology of Research on Parallel Algorithm .Chinese Journal of Computers, 2008(9):5-14.
[3]CHEN G L.Parallel Algorithms for Non-Numerical Computing .Journal of Computer Research and Development, 1988(11):30-46.
[4]WILKES M V.Automatic Calculating Machines.Journal of the Royal Society of Arts, 1951, 100(4862):56-90.
[5]CHEN Y N, HUANG K C, CHEN G L.The concept design of direct execution of high-level language FORTRAN computer .Journal of University of Science and Technology of China, 1980(4):47-54.
[6]LEI Y F, HUANG L S, CHEN G L.Principle of ConvertingRDF Query Language to SQL and Its Implementation .Journal of Computer Research and Development, 2004(7):214-220.
[7]JIN Y, HE H C, LV Y T.Principle of ternary optical computer .Science in China(Series E), 2003(2):111-115.
[8]SHEN Y F, CHEN G L, ZHANG Q F.Motif Finding Algorithm on Nanocomputing Platform .Journal of Chinese Computer System, 2007(4):61-65.
[9]REDDI S S, FEUSTEL E A.A Restructurable Computer Sys-tem.IEEE Transactions on Computers, 1981(1):21-38.
[10]SU X B, CHEN G L.Design and analysis of Manchester data flow prototype.Computer Engineering and Applications, 1987(10):3-9.
[11]CHEN G L, XIONG Y.General-Purpose Parallel Neural Network Simulation System .Journal of Chinese Computer System, 1992, 13(12):16-21, 32.
[12]ZHONG C, CHEN G L.Quantum computing and its applica-tions .Journal of Guangxi University(Natural Science Edition), 2002, 27(1):83-86.
[13]YANG W, HUANG L S, LUO Y L, CHEN G L.Unconditionally Secure Quantum Oblivious Transfer .Acata Electronica Sinica, 2007, 35(8):1543-1547.
[1] 陈鑫, 李芳, 丁海昕, 孙唯哲, 刘鑫, 陈德训, 叶跃进, 何香.
面向国产异构众核架构的CFD非结构网格计算并行优化方法
Parallel Optimization Method of Unstructured-grid Computing in CFD for DomesticHeterogeneous Many-core Architecture
计算机科学, 2022, 49(6): 99-107. https://doi.org/10.11896/jsjkx.210400157
[2] 李浩东, 胡洁, 范勤勤.
基于并行分区搜索的多模态多目标优化及其应用
Multimodal Multi-objective Optimization Based on Parallel Zoning Search and Its Application
计算机科学, 2022, 49(5): 212-220. https://doi.org/10.11896/jsjkx.210300019
[3] 傅天豪, 田鸿运, 金煜阳, 杨章, 翟季冬, 武林平, 徐小文.
一种面向构件化并行应用程序的性能骨架分析方法
Performance Skeleton Analysis Method Towards Component-based Parallel Applications
计算机科学, 2021, 48(6): 1-9. https://doi.org/10.11896/jsjkx.201200115
[4] 何亚茹, 庞建民, 徐金龙, 朱雨, 陶小涵.
基于神威平台的Floyd并行算法的实现和优化
Implementation and Optimization of Floyd Parallel Algorithm Based on Sunway Platform
计算机科学, 2021, 48(6): 34-40. https://doi.org/10.11896/jsjkx.201100051
[5] 冯凯, 马鑫玉.
(n,k)-冒泡排序网络的子网络可靠性
Subnetwork Reliability of (n,k)-bubble-sort Networks
计算机科学, 2021, 48(4): 43-48. https://doi.org/10.11896/jsjkx.201100139
[6] 胡蓉, 阳王东, 王昊天, 罗辉章, 李肯立.
基于GPU加速的并行WMD算法
Parallel WMD Algorithm Based on GPU Acceleration
计算机科学, 2021, 48(12): 24-28. https://doi.org/10.11896/jsjkx.210600213
[7] 马梦宇, 吴烨, 陈荦, 伍江江, 李军, 景宁.
显示导向型的大规模地理矢量实时可视化技术
Display-oriented Data Visualization Technique for Large-scale Geographic Vector Data
计算机科学, 2020, 47(9): 117-122. https://doi.org/10.11896/jsjkx.190800121
[8] 阳王东, 王昊天, 张宇峰, 林圣乐, 蔡沁耘.
异构混合并行计算综述
Survey of Heterogeneous Hybrid Parallel Computing
计算机科学, 2020, 47(8): 5-16. https://doi.org/10.11896/jsjkx.200600045
[9] 冯凯, 李婧.
k元n方体的子网络可靠性研究
Study on Subnetwork Reliability of k-ary n-cubes
计算机科学, 2020, 47(7): 31-36. https://doi.org/10.11896/jsjkx.190700170
[10] 杨宗霖, 李天瑞, 刘胜久, 殷成凤, 贾真, 珠杰.
基于Spark Streaming的流式并行文本校对
Streaming Parallel Text Proofreading Based on Spark Streaming
计算机科学, 2020, 47(4): 36-41. https://doi.org/10.11896/jsjkx.190300070
[11] 邓定胜.
一种改进的DBSCAN算法在Spark平台上的应用
Application of Improved DBSCAN Algorithm on Spark Platform
计算机科学, 2020, 47(11A): 425-429. https://doi.org/10.11896/jsjkx.190700071
[12] 汪洋, 李鹏, 季一木, 樊卫北, 张玉杰, 王汝传, 陈国良.
高性能计算与天文大数据研究综述
High Performance Computing and Astronomical Data:A Survey
计算机科学, 2020, 47(1): 1-6. https://doi.org/10.11896/jsjkx.190900042
[13] 徐传福,王曦,刘舒,陈世钊,林玉.
基于Python的大规模高性能LBM多相流模拟
Large-scale High-performance Lattice Boltzmann Multi-phase Flow Simulations Based on Python
计算机科学, 2020, 47(1): 17-23. https://doi.org/10.11896/jsjkx.190500009
[14] 徐磊, 陈荣亮, 蔡小川.
基于非结构化网格的高可扩展并行有限体积格子
Scalable Parallel Finite Volume Lattice Boltzmann Method Based on Unstructured Grid
计算机科学, 2019, 46(8): 84-88. https://doi.org/10.11896/j.issn.1002-137X.2019.08.013
[15] 颜辉, 朱伯靖, 万文, 钟英, DavidAYune.
基于超算暨HPIC-LBM的大时空尺度三维湍流磁重联
HPIC-LBM Method Based Simulation of Large Temporal-Spatial Scale 3D Turbulent Magnetic Reconnection on Supercomputer
计算机科学, 2019, 46(8): 89-94. https://doi.org/10.11896/j.issn.1002-137X.2019.08.014
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!