计算机科学 ›› 2020, Vol. 47 ›› Issue (8): 189-194.doi: 10.11896/jsjkx.200300001

• 数据库&大数据&数据科学 • 上一篇    下一篇

基于可见性图网络的中国专利申请关注度分析

张梦月, 胡军, 严冠, 李慧嘉   

  1. 中央财经大学管理科学与工程学院 北京 102206
  • 出版日期:2020-08-15 发布日期:2020-08-10
  • 通讯作者: 李慧嘉(Hjli@amss.ac.cn)
  • 作者简介:zmy_go@163.com
  • 基金资助:
    国家自然科学基金(71871233);北京市自然科学基金(9182015)

Analysis of China’s Patent Application Concern Based on Visibility Graph Network

ZHANG Meng-yue, HU Jun, YAN Guan, LI Hui-jia   

  1. School of Management and Engineering, Central University of Finance and Economics, Beijing 102206, China
  • Online:2020-08-15 Published:2020-08-10
  • About author:ZHANG Meng-yue, born in 1999, undergraduate.Her main research interests include data mining and operational research.
    LI Hui-jia, born in 1985, distinguished research fellow.His main research interests include data mining, pattern re-cognition, complex networks, and control theory.
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(71871233) and Beijing Natural Science Foundation(9182015).

摘要: 专利是创新的重要体现, 很多人在进行专利申请之前会在网上对专利申请的过程进行查询, 了解专利申请的步骤, 这些人的搜索事实也是了解创新企业或个人对创新是否重视的一个手段。文中从一个全新的时间序列分析的视角即网络的角度, 分析了关键字为“专利申请”的百度搜索指数时间序列的动力学特征。利用可见性图算法的原理将百度搜索指数时间序列转化为复杂网络, 并计算其参数, 分析其网络的拓扑结构。首先, 通过计算2019年各省复杂网络的参数发现各省的专利关注度具有一定差异;其次, 研究表明大多数网络均为无标度网络, 原始时间序列具有分形的特征;最后通过聚类, 可根据复杂网络的参数把31个省分为3类。文中分析了2011-2018年全国的百度搜索指数数据, 通过社团结构的划分, 可以发现时间序列的周期和中心节点对搜索指数影响的范围。

关键词: 百度指数, 复杂网络, 关注度, 可见性图算法, 专利申请

Abstract: Patent is an important embodiment of innovation.Many people will inquire about the process of patent application on the Internet and learn the application steps before patent application.In fact, the online searching is also a way to know whether innovative enterprises or individuals attach importance to innovation.This paper analyzes the dynamic characteristics of Baidu search index time series with the keywords of “patent application” from the perspective of a new time series analysis, namely from the perspective of network.The time series of Baidu search index is transformed into a complex network by using the principle of visibility graph algorithm, and its parameters are calculated to analyze the topological structure of the network.Firstly, by calculating the complex network, it can be found that the patent attention of each province has certain differences.Secondly, the study shows that most of the networks are scale-free networks and the original time series have fractal characteristics.Finally, by clustering, 31 provinces can be divided into 3 categories according to the characteristics of complex networks.This paper analyzes the data of Baidu search index from 2011 to 2018.By dividing the community structure, the time series period and the central node’s influence on the search index can be found.

Key words: Baidu index, Complex network, Concern, Patent application, Visibility graph algorithm

中图分类号: 

  • TP393
[1] YUAN J G, HOU Q S, CHENG C.Curse Effect of Enterprise Political Resources-Based on the Study of Political Relevance and Enterprises Technological Innovation [J].Management World, 2015(1):139-155.
[2] CHENG K, LIU R H, LIU Y.Research on the Role of Venture Capital in China’s Technological Innovation [J].Inquiry Into Economic Issues, 2006(10):17-22.
[3] HOU R X, GUAN J C.The Influence of Foreign Direct Investment on China’s Regional Innovation Ability [J].China Soft Science, 2006(5):104-111.
[4] CHEN G H, LAN B J.Research on R&D Expenditure, Competition Degree and Regional Innovation Ability of China-An Empirical Analysis Based of Domestic Patent Applications and R&D Data from 1998 to 2004 [J].Economists, 2007(3):101-106.
[5] ZHANG Q H, LUO J W.Analysis on the Effect of Shanghai Patent Subsidy Policy on the Number of Patent Applications [J].Studies in Science of Science, 2009, 27(5):682-685.
[6] YUE H L.Patent laws and innovation in China[J].International Review of Law & Economics, 2009, 29(4):304-313.
[7] WU J, HU D, WANG Q.Role of education for spillover effects of FDI on innovation in China:Evidence from the 1998-2008 provincial panel data[C]∥2010 IEEE 17Th International Conference on Industrial Engineering and Engineering Management.IEEE, 2010:454-457.
[8] ZHOU R F, YU J L.GARCH Model and Its Prediction of Time Series of Domestic Patent Application Acceptance [J].Journal of Zhongyuan University of Technology, 2008(3):31-35.
[9] CHEN Z Y, YANG D Z, MA W, et al.Prediction of Patent Application Quantity Based on the Combination Model of Wavelet Packet Analysis [J].Public Communication of Science & Technology, 2011(17):226-227.
[10]ZHANG J, SUN J F, LUO X D, et al.Characterizing pseudoperio-dic time series through the complex network approach[J].Physi-ca D:Nonlinear Phenomena, 2008, 237(22):2856-2865.
[11]XU X K, ZHANG J, SMALL M.Superfamily phenomena and motifs of networks induced from time series[C]∥Proceedings of the National Academy of Sciences.2008:19601-19605.
[12]MARWAN N, DONGES J F, ZOU Y, et al.Complex network
approach for recurrence analysis of time series[J].Phys.Lett.
A.2009, 373(46):4246-4254.
[13]DONNER R V, ZOU Y, DONGES J F, et al.Recurrence networks:A novel paradigm for nonlinear time series analysis[J].arXiv:0908.3447.
[14]LACASA L, LUQUE B, BALLESTEROS F, et al.From timeseries to complex networks:The visibility graph[C]∥Proc.Natl.Acad.Sci.USA.2008:4972-4975.
[15]LI X, YANG D, LIU X, et al.Bridging time series dynamics andcomplex network theory with application to electrocardiogram analysis[J].IEEE Circuits Syst.Mag., 2012, 12(4):33-46.
[16]JIANG S.Signal Analysis of Heart Rate Variation Based on Visi-bility Network Method [D].Nanjing:Nanjing University, 2014.
[17]GAO Z K, CAI Q, YANG Y X, et al.Multiscale limited penetrable horizontal visibility graph for analyzing nonlinear time series[J].Sci.Rep.doi:10.1038/srep35622.
[18]WATTS D, STROGATZ S.Collective dynamics of ‘small-world’ networks[J].Nature, 1998, 393:440-442.
[19]LACASA L, LUQUE B, BALLESTEROS F, et al.From timeseries to complex networks:The visibility graph[C]∥Procee-dings of the National Academy of Sciences of the United States of America.2008:4972-4975.
[20]XIE B C, ZHU J P, WANG X Y.The Application of Excel in big Data Mining[M].Xiamen University Press, 2016:104.
[1] 郑文萍, 刘美麟, 杨贵.
一种基于节点稳定性和邻域相似性的社区发现算法
Community Detection Algorithm Based on Node Stability and Neighbor Similarity
计算机科学, 2022, 49(9): 83-91. https://doi.org/10.11896/jsjkx.220400146
[2] 杨波, 李远彪.
数据科学与大数据技术课程体系的复杂网络分析
Complex Network Analysis on Curriculum System of Data Science and Big Data Technology
计算机科学, 2022, 49(6A): 680-685. https://doi.org/10.11896/jsjkx.210800123
[3] 何茜, 贺可太, 王金山, 林绅文, 杨菁林, 冯玉超.
比特币实体交易模式分析
Analysis of Bitcoin Entity Transaction Patterns
计算机科学, 2022, 49(6A): 502-507. https://doi.org/10.11896/jsjkx.210600178
[4] 王本钰, 顾益军, 彭舒凡, 郑棣文.
融合动态距离和随机竞争学习的社区发现算法
Community Detection Algorithm Based on Dynamic Distance and Stochastic Competitive Learning
计算机科学, 2022, 49(5): 170-178. https://doi.org/10.11896/jsjkx.210300206
[5] 陈世聪, 袁得嵛, 黄淑华, 杨明.
基于结构深度网络嵌入模型的节点标签分类算法
Node Label Classification Algorithm Based on Structural Depth Network Embedding Model
计算机科学, 2022, 49(3): 105-112. https://doi.org/10.11896/jsjkx.201000177
[6] 赵学磊, 季新生, 刘树新, 李英乐, 李海涛.
基于路径连接强度的有向网络链路预测方法
Link Prediction Method for Directed Networks Based on Path Connection Strength
计算机科学, 2022, 49(2): 216-222. https://doi.org/10.11896/jsjkx.210100107
[7] 李家文, 郭炳晖, 杨小博, 郑志明.
基于信息传播的致病基因识别研究
Disease Genes Recognition Based on Information Propagation
计算机科学, 2022, 49(1): 264-270. https://doi.org/10.11896/jsjkx.201100129
[8] 穆俊芳, 郑文萍, 王杰, 梁吉业.
基于重连机制的复杂网络鲁棒性分析
Robustness Analysis of Complex Network Based on Rewiring Mechanism
计算机科学, 2021, 48(7): 130-136. https://doi.org/10.11896/jsjkx.201000108
[9] 刘吉华, 张梦迪, 彭红霞, 贾兴平.
基于卷积神经网络的汽车销量预测模型
Automobile Sales Forecasting Model Based on Convolutional Neural Network
计算机科学, 2021, 48(6A): 178-183. https://doi.org/10.11896/jsjkx.200600104
[10] 胡军, 王雨桐, 何欣蔚, 武晖栋, 李慧嘉.
基于复杂网络的全球航空网络结构分析与应用
Analysis and Application of Global Aviation Network Structure Based on Complex Network
计算机科学, 2021, 48(6A): 321-325. https://doi.org/10.11896/jsjkx.200900112
[11] 王学光, 张爱新, 窦炳琳.
复杂网络上的非线性负载容量模型
Non-linear Load Capacity Model of Complex Networks
计算机科学, 2021, 48(6): 282-287. https://doi.org/10.11896/jsjkx.200700040
[12] 马媛媛, 韩华, 瞿倩倩.
基于节点亲密度的重要性评估算法
Importance Evaluation Algorithm Based on Node Intimate Degree
计算机科学, 2021, 48(5): 140-146. https://doi.org/10.11896/jsjkx.200300184
[13] 殷子樵, 郭炳晖, 马双鸽, 米志龙, 孙怡帆, 郑志明.
群智体系网络结构的自治调节:从生物调控网络结构谈起
Autonomous Structural Adjustment of Crowd Intelligence Network: Begin from Structure of Biological Regulatory Network
计算机科学, 2021, 48(5): 184-189. https://doi.org/10.11896/jsjkx.210200161
[14] 刘胜久, 李天瑞, 谢鹏, 刘佳.
带权图的多重分形度量
Measure for Multi-fractals of Weighted Graphs
计算机科学, 2021, 48(3): 136-143. https://doi.org/10.11896/jsjkx.200700159
[15] 龚追飞, 魏传佳.
基于改进AdaBoost算法的复杂网络链路预测
Link Prediction of Complex Network Based on Improved AdaBoost Algorithm
计算机科学, 2021, 48(3): 158-162. https://doi.org/10.11896/jsjkx.200600075
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!