计算机科学 ›› 2020, Vol. 47 ›› Issue (11A): 421-424.doi: 10.11896/jsjkx.191200132

• 大数据&数据科学 • 上一篇    下一篇

基于粒子群优化的SVM多分类的电动车价格预测研究

李宝胜1, 秦传东1,2   

  1. 1 北方民族大学数学与信息科学学院 银川 750021
    2 宁夏智能信息与大数据处理重点实验室 银川 750021
  • 出版日期:2020-11-15 发布日期:2020-11-17
  • 通讯作者: 秦传东(qcd369@163.com)
  • 基金资助:
    宁夏先进智能感知控制技术创新团队(NSFC61362033,NXJG2017003,NXYLXK2017B09)

Study on Electric Vehicle Price Prediction Based on PSO-SVM Multi-classification Method

LI Bao-sheng1, QIN Chuan-dong1,2   

  1. 1 School of Mathematics and Information Science,North Minzu University,Yinchuan 750021,China
    2 Ningxia Key Laboratory of Intelligent Information and Big Data Processing,Yinchuan 750021,China
  • Online:2020-11-15 Published:2020-11-17
  • About author:LI Bao-sheng,born in 1996,postgradu-ate.His main research interests include big data analysis and machine learning.
    QIN Chuan-dong,born in 1976,Ph.D,associate professor.His main research interests include machine learning and intelligent information processing.
  • Supported by:
    This work was supported by the Ningxia Advanced Intelligent Perception Control Technology Innovation Team (NSFC61362033,NXJG2017003,NXYLXK2017B09).

摘要: 随着新能源汽车的推广,电动汽车逐渐进入千家万户,而影响电动汽车价格的因素较多。文中对影响电动汽车价格的20个属性进行主成分分析研究,先用Pearson相关系数法和PCA算法对数据进行预处理,获得比较重要的样本属性,然后对研究后的新数据进行多分类有监督学习。在支持向量机模型的基础上,用粒子群算法对支持向量机(Support Vector Machine,SVM)模型的参数进行优化选择,实现了对电动汽车的多分类研究,实验表明所建立的模型对电动汽车的多分类效果明显。

关键词: 电动汽车, 多分类问题, 粒子群算法, 支持向量机

Abstract: With the promotion of new energy vehicles,electric vehicles have gradually entered thousands of households.There are many factors that affect the price of electric vehicles.Twenty attributes that affect the price of electric vehicles are studied by principle component analysis.First of all,the data are preprocessed by Pearson correlation coefficient method and PCA algorithm to obtain more essential sample attributes.Then,the new data are studied by multi-classification supervised learning.Based on the SVM model,the particle swarm optimization algorithm is used to optimize the parameters of the support vector machine model,and the multi-classification research of electric vehicle is realized successfully.The experimental results show that the multi-classification SVM model has significant effect.

Key words: Electric vehicle, Multi-classification problem, Particle swarm optimization algorithm, Support vector machine

中图分类号: 

  • TP305
[1] LIN Q Y,QIU G Y,ZENG H,et al.Research on Price subsidy and Sustainability of Pure Electric vehicles in China based on Learning Curve[J].Management Modernization,2019,39(3):39-43.
[2] CORTES C,VAPNIK V.Support-Vector Networks[J].Ma-chine Learning,1995,20:273-297.
[3] 邓乃扬,田英杰.数据挖掘中的新方法-支持向量机[M].北京:科学出版社,2004.
[4] 杨晓峰,郝志峰.支持向量机的算法设计与分析[M].北京:科学出版社,2013.
[5] WETSON J,WATKINS C.Support vector machines for multiclass pattern recognition[R].Proceedings of the 7th European Symposium on Artificial Neural Networks.1999.
[6] TOMAR D,AGARWAL S.A comparison on multi-class classification methods based on least squares twin support vector machine[J].Knowledge-Based Systems.2015,81(Jun.):131-147.
[7] ZHENG C H,JIAO L H.Automatic parameters selection for SVM based on GA[C]//Proceedings of 5th World Congress on Intelligent Control and Automation.Piscataway:IEEE Press,2004:1869-1872.
[8] ZHANG X L,CHEN X F,HE Z J.An ACO-based algorithm for parameter optimization of support vector machines[J].Expert Systems with Applications,2010,37(9):6618-6628.
[9] RANAEE V,EBRAHIMZADEH A,GHADERI R.Application of the PSO-SVM model for recognition of control chart patterns [J].ISA Transactions.2010,49(4):577-586.
[10] TREVORHASTIE,TIBSHIRANI R,FRIEDMAN J M.Theelements of statistical learning[M].12th Springer series in statistic,2017.
[11] ARDJANI F,SADOUNI K.Optimization of SVM Multiclass by Particle Swarm (PSO-SVM)[J].IJMECS,2010,2(2):32-38.
[12] JU X C,TIAN Y J,LIU D L,et al.Nonparallel Hyperplanes Support Vector Machine for Multi-class Classification[J].Procedia Computer Science,2015,51:1574-1582.
[13] KAYA D.Optimization of SVM Parameters with Hybrid CS-PSO Algorithms for Parkinson's Disease in LabVIEW Environment[J].Parkinson's Disease,2019,5:1-9.
[14] SHI Y,EBERHART R C.A modified particle swarm optimizer,[C]//1998 IEEE International Conference on Evolutionary Computation Proceedings.IEEE World Congresson Computational Intelligence (Cat.No.98TH8360).Anch-orage,AK,USA,1998:69-73.
[15] SHI Y,EBERHART R C.Empirical study of particle swarm optimization[C]//Proceedings of the 1999 Congress onEvolutiona-ry Computation-CEC99 (Cat.No.99TH8406).Washington,DC,USA,1999:1945-1950.
[16] LIU Y,ZHENG Y F.One-against-all multi-class SVM classification using reliability measures[C]//Proceedings.2005 IEEE International Joint Conference on Neural Networks.Montreal,2005:849-854.
[17] CRAMMER K,SINGER Y.On the Algo-rithmic Implementation of Multiclass Kernel-based Vector Machines[J].Journal of Machine Learning Research,2001(2):265-292.
[1] 单晓英, 任迎春.
基于改进麻雀搜索优化支持向量机的渔船捕捞方式识别
Fishing Type Identification of Marine Fishing Vessels Based on Support Vector Machine Optimized by Improved Sparrow Search Algorithm
计算机科学, 2022, 49(6A): 211-216. https://doi.org/10.11896/jsjkx.220300216
[2] 陈景年.
一种适于多分类问题的支持向量机加速方法
Acceleration of SVM for Multi-class Classification
计算机科学, 2022, 49(6A): 297-300. https://doi.org/10.11896/jsjkx.210400149
[3] 侯夏晔, 陈海燕, 张兵, 袁立罡, 贾亦真.
一种基于支持向量机的主动度量学习算法
Active Metric Learning Based on Support Vector Machines
计算机科学, 2022, 49(6A): 113-118. https://doi.org/10.11896/jsjkx.210500034
[4] 阙华坤, 冯小峰, 郭文翀, 李健, 曾伟良, 范竞敏.
基于模糊双目标规划的充电站布局模型
Development of Electric Vehicle Charging Station Distribution Model Based on Fuzzy Bi-objective Programming
计算机科学, 2022, 49(6A): 753-758. https://doi.org/10.11896/jsjkx.210700225
[5] 徐汝利, 黄樟灿, 谢秦秦, 李华峰, 湛航.
基于金字塔演化策略的彩色图像多阈值分割
Multi-threshold Segmentation for Color Image Based on Pyramid Evolution Strategy
计算机科学, 2022, 49(6): 231-237. https://doi.org/10.11896/jsjkx.210300096
[6] 周天清, 岳亚莉.
超密集物联网络中多任务多步计算卸载算法研究
Multi-Task and Multi-Step Computation Offloading in Ultra-dense IoT Networks
计算机科学, 2022, 49(6): 12-18. https://doi.org/10.11896/jsjkx.211200147
[7] 邱旭, 卞浩卜, 吴铭骁, 朱晓荣.
基于5G毫米波通信的高速公路车联网任务卸载算法研究
Study on Task Offloading Algorithm for Internet of Vehicles on Highway Based on 5G MillimeterWave Communication
计算机科学, 2022, 49(6): 25-31. https://doi.org/10.11896/jsjkx.211100198
[8] 张捷, 唐强, 刘朔晗, 曹越, 赵维, 刘韬, 谢士明.
智能电网中基于优先级的预约式电动汽车充电管理研究
Priority Based EV Charging Management Under Service Reservation in Smart Grid
计算机科学, 2022, 49(6): 55-65. https://doi.org/10.11896/jsjkx.220200013
[9] 李晓东, 於志勇, 黄昉菀, 朱伟平, 涂淳钰, 郑伟楠.
面向河道环境监测的群智感知参与者选择策略
Participant Selection Strategies Based on Crowd Sensing for River Environmental Monitoring
计算机科学, 2022, 49(5): 371-379. https://doi.org/10.11896/jsjkx.210200005
[10] 邢云冰, 龙广玉, 胡春雨, 忽丽莎.
基于SVM的类别增量人体活动识别方法
Human Activity Recognition Method Based on Class Increment SVM
计算机科学, 2022, 49(5): 78-83. https://doi.org/10.11896/jsjkx.210400024
[11] 武玉坤, 李伟, 倪敏雅, 许志骋.
单类支持向量机融合深度自编码器的异常检测模型
Anomaly Detection Model Based on One-class Support Vector Machine Fused Deep Auto-encoder
计算机科学, 2022, 49(3): 144-151. https://doi.org/10.11896/jsjkx.210100142
[12] 侯春萍, 赵春月, 王致芃.
基于自反馈最优子类挖掘的视频异常检测算法
Video Abnormal Event Detection Algorithm Based on Self-feedback Optimal Subclass Mining
计算机科学, 2021, 48(7): 199-205. https://doi.org/10.11896/jsjkx.200800146
[13] 孙振强, 罗永龙, 郑孝遥, 章海燕.
一种融合用户情感与相似度的智能旅游路径推荐方法
Intelligent Travel Route Recommendation Method Integrating User Emotion and Similarity
计算机科学, 2021, 48(6A): 226-230. https://doi.org/10.11896/jsjkx.200900119
[14] 郭福民, 张华, 胡瑢华, 宋岩.
一种基于表面肌电信号的腕部肌力估计方法研究
Study on Method for Estimating Wrist Muscle Force Based on Surface EMG Signals
计算机科学, 2021, 48(6A): 317-320. https://doi.org/10.11896/jsjkx.200600021
[15] 卓雅倩, 欧博.
噪声环境下的人脸防伪识别算法研究
Face Anti-spoofing Algorithm for Noisy Environment
计算机科学, 2021, 48(6A): 443-447. https://doi.org/10.11896/jsjkx.200900207
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!