计算机科学 ›› 2020, Vol. 47 ›› Issue (11A): 535-540.doi: 10.11896/jsjkx.200700164

• 大数据&数据科学 • 上一篇    下一篇

基于时空优化的多尺度卷积神经网络空气质量预测模型

周杰1, 罗云芳1, 雷耀建2, 李文敬3, 封宇1   

  1. 1 广西职业技术学院机电与信息工程学院 南宁 530226
    2 广西幼儿师范高等专科学校 南宁 530022
    3 南宁师范大学物流管理与工程学院 南宁 530001
  • 出版日期:2020-11-15 发布日期:2020-11-17
  • 通讯作者: 罗云芳(123377307@qq.com)
  • 作者简介:779489658@qq.com
  • 基金资助:
    国家自然科学基金项目(61866006);广西教育厅自然科学基金项目(2019ITA01002,2018KY0951,2019KY1220,2017KY0980);广西职业技术学院自然科学类课题(桂职院(2019)176号191202)

Multi-scale Convolutional Neural Network Air Quality Prediction Model Based on Spatio-Temporal Optimization

ZHOU Jie1, LUO Yun-fang1, LEI Yao-jian2, LI Wen-jing3, FENG Yu1   

  1. 1 College of Mechanical,Electrical and Information Engineering,Guangxi Vocational & Technical College,Nanning 530226,China
    2 Guangxi College for Preshcool Education,Nanning 530022,China
    3 School of Logistics Management and Engineering,Nanning Normal University,Nanning 530001,China
  • Online:2020-11-15 Published:2020-11-17
  • About author:ZHOU Jie,born in 1992,postgraduate.His main research interests include intelligent computing and parallel computing.
    LUO Yun-fang,born in 1981,associate professor.His main research interests include big data,computer application technology and computer teaching.
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(61866006),Natural Science Foundation of Guangxi Education Department(2019ITA01002,2018KY0951,2019KY1220,2017KY0980) and Natural Science Project of Guangxi Vocational & Technical College(2019-176-191202).

摘要: 目前针对空气质量数值预测多采用单一站点时间序列特征进行浓度预测,没有考虑空气质量数值的变化受空间特征的影响。针对该问题提出一种基于时空优化的多尺度神经网络(MSCNN-GALSTM)模型用于空气质量预测,利用一维多尺度卷积核(MSCNN)提取空气质量数据中的局部时间关系和空间特征关系,并进行线性拼接融合,得出多站点多特征的相互时空特征关系,结合长短记忆网络(LSTM)处理时间序列的优势,并引入遗传算法(GA)对LSTM网络的参数集进行全局寻优,把多站点多特征的相互时空关系输入至LSTM网络中,进而输出多站点多特征的长期特征依赖关系。最后将MSCNN-GALSTM模型与单一LSTM基准模型和单尺度卷积神经网络模型进行对比,均方根误差(RMSE)下降约11%,平均预测准确率提升约20%。实验结果表明,MSCNN-GALSTM预测模型在空气质量数据预测中特征提取更加全面、层次更深,预测精度更高,并且表现出了更好的泛化能力。

关键词: LSTM, 多尺度卷积, 空间特征, 时空优化, 预测模型

Abstract: At present,the air quality prediction is mainly based on the time series of a single station,without considering the influence of the spatial characteristics on the air quality.To solve this problem,a multi-scale neural network (MSCNN-GALSTM) model based on spatiotemporal optimization is proposed for air quality prediction.one-dimensional multi-scale convolution kernel (MSCNN) is used to extract the local temporal and spatial characteristic relations in air quality data,the LINEAR SPLICING and fusion are carried out to obtain the space-time characteristic relation of multi-sites and multi-features,combine the advantage of long-short memory network (LSTM) to process time series,and introduce genetic algorithm (Ga) to optimize the parameter set of LSTM network globally,the time-space relationship of multi-site and multi-feature is input into the LSTM network,and then the long-term feature dependence of multi-site and multi-feature is output.Finally,the MSCNN-GALSTM model was compared with the single LSTM reference model and the single scale convolutional neural network model.The root mean square error (RMSE) decreased by about 11% and the average prediction accuracy increased by about 20%.The results show that the MSCNN-GALSTM model has more comprehensive feature extraction,deeper level,higher prediction accuracy and better generalization ability.

Key words: LSTM, Multiscale convolution, Prediction model, Spatial features, Spatio-temporal optimization

中图分类号: 

  • TP183
[1] ÖZELKADILAR G,KADILAR C.Assessing air quality in Aksaray with time series analysis[C]//American Institute of Physics Conference Series.AIP Publishing LLC,2017.
[2] RAHMAN N H A,LEE M H,SUHARTONO,et al.Artificial neural networks and fuzzy time series forecasting:an application to air quality[J].Quality & Quantity,2015,49(6):2633-2647.
[3] BIANCOFIORE F,BUSILACCHIO M,VERDECCHIA M,et al.Recursive neural network model for analysis and forecast of PM10 and PM2.5[J].Atmospheric Pollution Research,2017,8(4):652-659.
[4] SONG X,HUANG J,SONG D.Air Quality Prediction based on LSTM-Kalman Model[C]//2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC).IEEE,2019:695-699.
[5] CHIOU-JYE H,PING-HUAN K.A Deep CNN-LSTM Model for Particulate Matter (PM2.5) Forecasting in Smart Cities[J].Sensors,2018,18(7):2220-2241.
[6] VERMA I,AHUJA R,MEISHERI H,et al.Air Pollutant Severity Prediction Using Bi-Directional LSTM Network[C]//2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI).ACM,2018:651-654.
[7] BECKERMAN B S,JERRETT M,SERRE M,et al.A hybridapproach to estimating national scale spatiotemporal variability of PM2.5 in the contiguous United States[J].Environmental Science & Technology,2013,47(13):7233-7241.
[8] HWA-LUNG Y,CHIH-HSIN W.Retrospective prediction ofintraurban spatiotemporal distribution of PM2.5 in Taipei[J].Atmospheric Environment,2010,44(25):3053-3065.
[9] BARI M A,KINDZIERSKI W B.Characteristics of air quality and sources affecting fine particulate matter (PM2.5) levels in the City of Red Deer,Canada[J].Environmental Pollution,2016,221:367-376.
[10] LIAO Z H,SUN J R,FAN S J,et al.Variation characteristics and influencing factors of air pollution in Pearl River Delta area from 2006 to 2012[J].ZhongguoHuanjingKexue/china Environmental Science,2015,35(2):329-336.
[11] LI X,PENG L,YAO X,et al.Long short-term memory neural network for air pollutant concentration predictions:Method development and evaluation[J].Environmental Pollution,2017,231(1):997-1004.
[12] ZHU Y J,LI Q,HOU J X,et al.Spatio-temporal modelingand prediction of PM2.5concentration based on Bayesian method[J].Science of Surveying and Mapping,2016,41(2):44-48.
[13] HAN X G,LI B Y,GUAN Z Y.Atmospheric Quality Prediction Model Based on RBF Neural Network-Markov Chain of Grey Correlational Analysis Filter Indexes[J].Acta ScientiarumNaturalium Universitatis Nankaiensis,2013,46(2):22-27.
[14] GAO S,HU H P,LI Y,et al.AQI Prediction Based on Improved Mind EvolutionaryAlgorithm and BP Neural Network[J].Mathematics in Practice and RACTICE Theory,2018,48(19):151-157.
[15] YUAN G,YANG W.Evaluating China's Air Pollution Control Policy with Extended AQI Indicator System:Example of the Beijing-Tianjin-Hebei Region[J].Sustainability,2019,11(3):939.
[16] HU Z,LI W,QIAO J.Prediction of PM2.5 based on Elman neural network with chaos theory[C]//2016 35th Chinese Control Conference (CCC).IEEE,2016:3573-3578.
[17] SAYEGH A S,MUNIR S,HABEEBULLAH T M.Comparing the Performance of Statistical Models for Predicting PM10 Concentrations[J].Aerosol & Air Quality Research,2014,14(3):653-665.
[18] GLOROT X,BENGIO Y.Understanding the difficulty of training deep feedforward neural networks[J].Journal of Machine Learning Research,2010(9):249-256.
[19] YE X Z,TAO F F,QI R Z,et al.Improvement on Activation Functions of Recurrent Neural Network Architectures[J].Jisuanji Yu Xiandaihua,2016(12):29-33.
[20] LI H D.Portforlio selection based on recurrent neural network[D].Zhengzhou:Zhengzhou University,2018.
[21] DING L,FANG W,LUO H,et al.A deep hybrid learning model to detect unsafe behavior:Integrating convolution neural networks and long short-term memory[J].Automation in Construction,2018,86:118-124.
[22] LEI Y J.Research on Urban Air Quality Prediction Based onTemporal and Spatial Optimization Neural Network[D].Nanning:Nanning Normal University,2020.
[23] JI L.Research and Implementation ofPM2.5 Prediction Based on CNNs-GRU Deep Learning[D].Chongqing:Chongqing University of Posts and Telecommunications,2019.
[1] 张源, 康乐, 宫朝辉, 张志鸿.
基于Bi-LSTM的期货市场关联交易行为检测方法
Related Transaction Behavior Detection in Futures Market Based on Bi-LSTM
计算机科学, 2022, 49(7): 31-39. https://doi.org/10.11896/jsjkx.210400304
[2] 于家畦, 康晓东, 白程程, 刘汉卿.
一种新的中文电子病历文本检索模型
New Text Retrieval Model of Chinese Electronic Medical Records
计算机科学, 2022, 49(6A): 32-38. https://doi.org/10.11896/jsjkx.210400198
[3] 林夕, 陈孜卓, 王中卿.
基于不平衡数据与集成学习的属性级情感分类
Aspect-level Sentiment Classification Based on Imbalanced Data and Ensemble Learning
计算机科学, 2022, 49(6A): 144-149. https://doi.org/10.11896/jsjkx.210500205
[4] 王杉, 徐楚怡, 师春香, 张瑛.
基于CNN-LSTM的卫星云图云分类方法研究
Study on Cloud Classification Method of Satellite Cloud Images Based on CNN-LSTM
计算机科学, 2022, 49(6A): 675-679. https://doi.org/10.11896/jsjkx.210300177
[5] 颜锐, 梁智勇, 李锦涛, 任菲.
基于深度学习和H&E染色病理图像的肿瘤相关指标预测研究综述
Predicting Tumor-related Indicators Based on Deep Learning and H&E Stained Pathological Images:A Survey
计算机科学, 2022, 49(2): 69-82. https://doi.org/10.11896/jsjkx.210900140
[6] 袁景凌, 丁远远, 盛德明, 李琳.
基于视觉方面注意力的图像文本情感分析模型
Image-Text Sentiment Analysis Model Based on Visual Aspect Attention
计算机科学, 2022, 49(1): 219-224. https://doi.org/10.11896/jsjkx.201000074
[7] 程思伟, 葛唯益, 王羽, 徐建.
BGCN:基于BERT和图卷积网络的触发词检测
BGCN:Trigger Detection Based on BERT and Graph Convolution Network
计算机科学, 2021, 48(7): 292-298. https://doi.org/10.11896/jsjkx.200500133
[8] 俞建业, 戚湧, 王宝茁.
基于Spark的车联网分布式组合深度学习入侵检测方法
Distributed Combination Deep Learning Intrusion Detection Method for Internet of Vehicles Based on Spark
计算机科学, 2021, 48(6A): 518-523. https://doi.org/10.11896/jsjkx.200700129
[9] 胡聿文.
基于优化LSTM模型的股票预测
Stock Forecast Based on Optimized LSTM Model
计算机科学, 2021, 48(6A): 151-157. https://doi.org/10.11896/jsjkx.200400011
[10] 陈慧琴, 郭贯成, 秦朝轩, 李兆碧.
基于GM-LSTM模型的南京市老年人口预测研究
Research on Elderly Population Prediction Based on GM-LSTM Model in Nanjing City
计算机科学, 2021, 48(6A): 231-234. https://doi.org/10.11896/jsjkx.200900142
[11] 张争万, 吴迪, 张春炯.
基于多通道稀疏LSTM的蜂窝流量预测研究
Study of Cellular Traffic Prediction Based on Multi-channel Sparse LSTM
计算机科学, 2021, 48(6): 296-300. https://doi.org/10.11896/jsjkx.210400134
[12] 董哲, 邵若琦, 陈玉梁, 翟维枫.
基于BERT和对抗训练的食品领域命名实体识别
Named Entity Recognition in Food Field Based on BERT and Adversarial Training
计算机科学, 2021, 48(5): 247-253. https://doi.org/10.11896/jsjkx.200800181
[13] 李冰荣, 皮德常, 候梦如.
基于CNN和LSTM的移动对象目的地预测
Destination Prediction of Moving Objects Based on Convolutional Neural Networks and Long-Short Term Memory
计算机科学, 2021, 48(4): 70-77. https://doi.org/10.11896/jsjkx.200200024
[14] 陈明豪, 祝跃飞, 芦斌, 翟懿, 李玎.
基于Attention-CNN的加密流量应用类型识别
Classification of Application Type of Encrypted Traffic Based on Attention-CNN
计算机科学, 2021, 48(4): 325-332. https://doi.org/10.11896/jsjkx.200900155
[15] 王博宇, 王中卿, 周国栋.
基于回复生成的对话意图预测
Dialogue Act Prediction Based on Response Generation
计算机科学, 2021, 48(2): 212-216. https://doi.org/10.11896/jsjkx.200700137
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!