计算机科学 ›› 2020, Vol. 47 ›› Issue (11A): 535-540.doi: 10.11896/jsjkx.200700164
周杰1, 罗云芳1, 雷耀建2, 李文敬3, 封宇1
ZHOU Jie1, LUO Yun-fang1, LEI Yao-jian2, LI Wen-jing3, FENG Yu1
摘要: 目前针对空气质量数值预测多采用单一站点时间序列特征进行浓度预测,没有考虑空气质量数值的变化受空间特征的影响。针对该问题提出一种基于时空优化的多尺度神经网络(MSCNN-GALSTM)模型用于空气质量预测,利用一维多尺度卷积核(MSCNN)提取空气质量数据中的局部时间关系和空间特征关系,并进行线性拼接融合,得出多站点多特征的相互时空特征关系,结合长短记忆网络(LSTM)处理时间序列的优势,并引入遗传算法(GA)对LSTM网络的参数集进行全局寻优,把多站点多特征的相互时空关系输入至LSTM网络中,进而输出多站点多特征的长期特征依赖关系。最后将MSCNN-GALSTM模型与单一LSTM基准模型和单尺度卷积神经网络模型进行对比,均方根误差(RMSE)下降约11%,平均预测准确率提升约20%。实验结果表明,MSCNN-GALSTM预测模型在空气质量数据预测中特征提取更加全面、层次更深,预测精度更高,并且表现出了更好的泛化能力。
中图分类号:
[1] ÖZELKADILAR G,KADILAR C.Assessing air quality in Aksaray with time series analysis[C]//American Institute of Physics Conference Series.AIP Publishing LLC,2017. [2] RAHMAN N H A,LEE M H,SUHARTONO,et al.Artificial neural networks and fuzzy time series forecasting:an application to air quality[J].Quality & Quantity,2015,49(6):2633-2647. [3] BIANCOFIORE F,BUSILACCHIO M,VERDECCHIA M,et al.Recursive neural network model for analysis and forecast of PM10 and PM2.5[J].Atmospheric Pollution Research,2017,8(4):652-659. [4] SONG X,HUANG J,SONG D.Air Quality Prediction based on LSTM-Kalman Model[C]//2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC).IEEE,2019:695-699. [5] CHIOU-JYE H,PING-HUAN K.A Deep CNN-LSTM Model for Particulate Matter (PM2.5) Forecasting in Smart Cities[J].Sensors,2018,18(7):2220-2241. [6] VERMA I,AHUJA R,MEISHERI H,et al.Air Pollutant Severity Prediction Using Bi-Directional LSTM Network[C]//2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI).ACM,2018:651-654. [7] BECKERMAN B S,JERRETT M,SERRE M,et al.A hybridapproach to estimating national scale spatiotemporal variability of PM2.5 in the contiguous United States[J].Environmental Science & Technology,2013,47(13):7233-7241. [8] HWA-LUNG Y,CHIH-HSIN W.Retrospective prediction ofintraurban spatiotemporal distribution of PM2.5 in Taipei[J].Atmospheric Environment,2010,44(25):3053-3065. [9] BARI M A,KINDZIERSKI W B.Characteristics of air quality and sources affecting fine particulate matter (PM2.5) levels in the City of Red Deer,Canada[J].Environmental Pollution,2016,221:367-376. [10] LIAO Z H,SUN J R,FAN S J,et al.Variation characteristics and influencing factors of air pollution in Pearl River Delta area from 2006 to 2012[J].ZhongguoHuanjingKexue/china Environmental Science,2015,35(2):329-336. [11] LI X,PENG L,YAO X,et al.Long short-term memory neural network for air pollutant concentration predictions:Method development and evaluation[J].Environmental Pollution,2017,231(1):997-1004. [12] ZHU Y J,LI Q,HOU J X,et al.Spatio-temporal modelingand prediction of PM2.5concentration based on Bayesian method[J].Science of Surveying and Mapping,2016,41(2):44-48. [13] HAN X G,LI B Y,GUAN Z Y.Atmospheric Quality Prediction Model Based on RBF Neural Network-Markov Chain of Grey Correlational Analysis Filter Indexes[J].Acta ScientiarumNaturalium Universitatis Nankaiensis,2013,46(2):22-27. [14] GAO S,HU H P,LI Y,et al.AQI Prediction Based on Improved Mind EvolutionaryAlgorithm and BP Neural Network[J].Mathematics in Practice and RACTICE Theory,2018,48(19):151-157. [15] YUAN G,YANG W.Evaluating China's Air Pollution Control Policy with Extended AQI Indicator System:Example of the Beijing-Tianjin-Hebei Region[J].Sustainability,2019,11(3):939. [16] HU Z,LI W,QIAO J.Prediction of PM2.5 based on Elman neural network with chaos theory[C]//2016 35th Chinese Control Conference (CCC).IEEE,2016:3573-3578. [17] SAYEGH A S,MUNIR S,HABEEBULLAH T M.Comparing the Performance of Statistical Models for Predicting PM10 Concentrations[J].Aerosol & Air Quality Research,2014,14(3):653-665. [18] GLOROT X,BENGIO Y.Understanding the difficulty of training deep feedforward neural networks[J].Journal of Machine Learning Research,2010(9):249-256. [19] YE X Z,TAO F F,QI R Z,et al.Improvement on Activation Functions of Recurrent Neural Network Architectures[J].Jisuanji Yu Xiandaihua,2016(12):29-33. [20] LI H D.Portforlio selection based on recurrent neural network[D].Zhengzhou:Zhengzhou University,2018. [21] DING L,FANG W,LUO H,et al.A deep hybrid learning model to detect unsafe behavior:Integrating convolution neural networks and long short-term memory[J].Automation in Construction,2018,86:118-124. [22] LEI Y J.Research on Urban Air Quality Prediction Based onTemporal and Spatial Optimization Neural Network[D].Nanning:Nanning Normal University,2020. [23] JI L.Research and Implementation ofPM2.5 Prediction Based on CNNs-GRU Deep Learning[D].Chongqing:Chongqing University of Posts and Telecommunications,2019. |
[1] | 张源, 康乐, 宫朝辉, 张志鸿. 基于Bi-LSTM的期货市场关联交易行为检测方法 Related Transaction Behavior Detection in Futures Market Based on Bi-LSTM 计算机科学, 2022, 49(7): 31-39. https://doi.org/10.11896/jsjkx.210400304 |
[2] | 于家畦, 康晓东, 白程程, 刘汉卿. 一种新的中文电子病历文本检索模型 New Text Retrieval Model of Chinese Electronic Medical Records 计算机科学, 2022, 49(6A): 32-38. https://doi.org/10.11896/jsjkx.210400198 |
[3] | 林夕, 陈孜卓, 王中卿. 基于不平衡数据与集成学习的属性级情感分类 Aspect-level Sentiment Classification Based on Imbalanced Data and Ensemble Learning 计算机科学, 2022, 49(6A): 144-149. https://doi.org/10.11896/jsjkx.210500205 |
[4] | 王杉, 徐楚怡, 师春香, 张瑛. 基于CNN-LSTM的卫星云图云分类方法研究 Study on Cloud Classification Method of Satellite Cloud Images Based on CNN-LSTM 计算机科学, 2022, 49(6A): 675-679. https://doi.org/10.11896/jsjkx.210300177 |
[5] | 颜锐, 梁智勇, 李锦涛, 任菲. 基于深度学习和H&E染色病理图像的肿瘤相关指标预测研究综述 Predicting Tumor-related Indicators Based on Deep Learning and H&E Stained Pathological Images:A Survey 计算机科学, 2022, 49(2): 69-82. https://doi.org/10.11896/jsjkx.210900140 |
[6] | 袁景凌, 丁远远, 盛德明, 李琳. 基于视觉方面注意力的图像文本情感分析模型 Image-Text Sentiment Analysis Model Based on Visual Aspect Attention 计算机科学, 2022, 49(1): 219-224. https://doi.org/10.11896/jsjkx.201000074 |
[7] | 程思伟, 葛唯益, 王羽, 徐建. BGCN:基于BERT和图卷积网络的触发词检测 BGCN:Trigger Detection Based on BERT and Graph Convolution Network 计算机科学, 2021, 48(7): 292-298. https://doi.org/10.11896/jsjkx.200500133 |
[8] | 俞建业, 戚湧, 王宝茁. 基于Spark的车联网分布式组合深度学习入侵检测方法 Distributed Combination Deep Learning Intrusion Detection Method for Internet of Vehicles Based on Spark 计算机科学, 2021, 48(6A): 518-523. https://doi.org/10.11896/jsjkx.200700129 |
[9] | 胡聿文. 基于优化LSTM模型的股票预测 Stock Forecast Based on Optimized LSTM Model 计算机科学, 2021, 48(6A): 151-157. https://doi.org/10.11896/jsjkx.200400011 |
[10] | 陈慧琴, 郭贯成, 秦朝轩, 李兆碧. 基于GM-LSTM模型的南京市老年人口预测研究 Research on Elderly Population Prediction Based on GM-LSTM Model in Nanjing City 计算机科学, 2021, 48(6A): 231-234. https://doi.org/10.11896/jsjkx.200900142 |
[11] | 张争万, 吴迪, 张春炯. 基于多通道稀疏LSTM的蜂窝流量预测研究 Study of Cellular Traffic Prediction Based on Multi-channel Sparse LSTM 计算机科学, 2021, 48(6): 296-300. https://doi.org/10.11896/jsjkx.210400134 |
[12] | 董哲, 邵若琦, 陈玉梁, 翟维枫. 基于BERT和对抗训练的食品领域命名实体识别 Named Entity Recognition in Food Field Based on BERT and Adversarial Training 计算机科学, 2021, 48(5): 247-253. https://doi.org/10.11896/jsjkx.200800181 |
[13] | 李冰荣, 皮德常, 候梦如. 基于CNN和LSTM的移动对象目的地预测 Destination Prediction of Moving Objects Based on Convolutional Neural Networks and Long-Short Term Memory 计算机科学, 2021, 48(4): 70-77. https://doi.org/10.11896/jsjkx.200200024 |
[14] | 陈明豪, 祝跃飞, 芦斌, 翟懿, 李玎. 基于Attention-CNN的加密流量应用类型识别 Classification of Application Type of Encrypted Traffic Based on Attention-CNN 计算机科学, 2021, 48(4): 325-332. https://doi.org/10.11896/jsjkx.200900155 |
[15] | 王博宇, 王中卿, 周国栋. 基于回复生成的对话意图预测 Dialogue Act Prediction Based on Response Generation 计算机科学, 2021, 48(2): 212-216. https://doi.org/10.11896/jsjkx.200700137 |
|