计算机科学 ›› 2021, Vol. 48 ›› Issue (5): 247-253.doi: 10.11896/jsjkx.200800181
董哲, 邵若琦, 陈玉梁, 翟维枫
DONG Zhe, SHAO Ruo-qi, CHEN Yu-liang, ZHAI Wei-feng
摘要: 为了在食品领域从非结构化语料中抽取出有效的实体信息,提出了一种基于BERT(Bidirectional Encoder Representations from Transformers)和对抗训练的命名实体识别(Named Entity Recognition,NER)的方法。命名实体识别是一种典型的序列标注问题。目前,深度学习方法已经被广泛应用于该任务并取得了显著的成果,但食品领域等特定领域中的命名实体识别存在难以构建大量样本集、专用名词边界识别不准确等问题。针对这些问题,文中利用BERT得到字向量,以丰富语义的表示;并引入对抗训练,在有效防止中文分词任务私有信息的噪声的基础上,利用中文分词(Chinese Word Segmentation,CWS)和命名实体识别的共享信息来提高识别实体边界的精确率。在两类领域的语料上进行实验,这两类领域分别是中文食品安全案例和人民日报新闻。其中,中文食品安全案例用于训练命名实体识别任务,人民日报新闻用于训练中文分词任务。使用对抗训练来提高命名实体识别任务中实体(包括人名、地名、机构名、食品名称、添加剂名称)识别的精确度,实验结果表明,所提方法的精确率、召回率和F1值分别为95.46%,89.50%,92.38%,因此在食品领域边界不显著的中文命名实体识别任务上,该方法的了F1值得到提升。
中图分类号:
[1]WU H,LV L,YU B H.Chinese Named Entity RecognitionBased on Transfer Learning and BiLSTM-CRF[J].Journal of Chinese Mini-Micro Computer Systems,2019,40(6):1142-1147. [2]JIA Y,XU X.Chinese Named Entity Recognition Based onCNN-BiLSTM-CRF[C]//2018 IEEE 9th International Conference on Software Engineering and Service Science (ICSESS).Beijing,China,2018:1-4. [3]CAI X,DONG S,HU J.A deep learning model incorporating part of speech and self-matching attention for named entity recognition of Chinese electronic medical records[J].BMC Medical Informatics and Decision Making,2019,19(S2):102-109. [4]PENG N Y,MARK D.Improving named entity recognition for chinese social media with word segmentation representation learning[J].arXiv:1603.00786. [5]CHEN P H,LIN C J,SCHLKOPF B.A Tutorial on ν-support vector machines[J].Applied Stochastic Models in Business and Industry,2005,21(2):111-136. [6]ZHOU G,SU J.Named Entity Recognition using an HMM-based Chunk Tagger[C]//Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics.Philadelphia,PA,USA,2002. [7]LAFFERTY J,MCCALLUM A,PEREIRA F C N.Conditional Random Fields:Probabilistic Models for Segmenting and Labeling Sequence Data[C]//Proceedings of the 18th International Conference on Machine Learning (ICML 2001).2001:282-289. [8]HUANG Z,XU W,YU K.Bidirectional LSTM-CRF Models for Sequence Tagging[J].2015,arXiv:1508.01991. [9]ZHANG J F,ZHANG Z S,WANG J,et al.Design of named entity recognition framework based on BLSTM-CRF in Chinese domain[J].Computing Technology and Automation,2019,38(3):117-121. [10]ZHANG Y,YANG J.Chinese NER Using Lattice LSTM[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers).2018:1554-1564. [11]ZHONG Q,TANG Y.An Attention-Based BILSTM-CRFfor Chinese Named Entity Recognition[C]//2020 IEEE 5th International Conference on Cloud Computing and Big Data Analytics (ICCCBDA).2020:550-555. [12]MIKOLOV T,CHEN K,CORRADO G,et al.Efficient Estimation of Word Representations in Vector Space[J].2013,arXiv:1301.3781. [13]XU G,MENG Y,ZHOU X,et al.Chinese Event DetectionBased on Multi-feature Fusion and BiLSTM[J].IEEE Access,2019(99):1-1. [14]DEVLIN J,CHANG M W,LEE K,et al.BERT:Pre Training of Deep Bidirectional Transformers for Language Understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2019:4171-4186. [15]CHEN X,SUN Y,ATHIWARATKUN B,et al.AdversarialDeep Averaging Networks for Cross-Lingual Sentiment Classification[J].Transactions of the Association for Computational Linguistics,2018,6:557-570. [16]YANG Y S,ZHANG M S,CHEN W L,et al.Adversarial learning for chinese ner from crowd annotations[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2018. [17]SHUI L C,LIU W Z,FENG Z M.Automatic image annotation based on generative confrontation network[J].Journal of Computer Applications,2019,39(7):2129-2133. [18]BOUSMALIS K,TRIGEORGIS G,SILBERMAN N,et al.Domain separation networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems.2016:343-35. [19]YANG H M,LI L,YANG R D,et al.Recognition model ofnamed entities in electronic medical records based on two-way LSTM neural network[J].Journal of Clinical Rehabilitative Tissue Engineering Research,2018,22(20):3237-3242. [20]SHEN L X,ZOU B W,YE J,et al.Negative focus recognition based on two-way LSTM and CRF fusion model[J].Journal of Chinese Information Processing,2019,33(1):25-34. [21]LI J Y,YANG F.Text-level machine translation based on joint attention mechanism[J].Journal of Chinese Information Processing,2019,33(12):45-53. [22]GRAVES A,JüRGEN S.Framewise phoneme classification with bidirectional LSTM and other neural network architectures[J].Neural Networks,2005,18(5/6):602-610. [23]XU F,SONG Y H.Research on named entity recognition under massive food safety incidents[J].Science Research Management,2018,39(7):131-138. |
[1] | 于家畦, 康晓东, 白程程, 刘汉卿. 一种新的中文电子病历文本检索模型 New Text Retrieval Model of Chinese Electronic Medical Records 计算机科学, 2022, 49(6A): 32-38. https://doi.org/10.11896/jsjkx.210400198 |
[2] | 杜晓明, 袁清波, 杨帆, 姚奕, 蒋祥. 军事指控保障领域命名实体识别语料库的构建 Construction of Named Entity Recognition Corpus in Field of Military Command and Control Support 计算机科学, 2022, 49(6A): 133-139. https://doi.org/10.11896/jsjkx.210400132 |
[3] | 康雁, 吴志伟, 寇勇奇, 张兰, 谢思宇, 李浩. 融合Bert和图卷积的深度集成学习软件需求分类 Deep Integrated Learning Software Requirement Classification Fusing Bert and Graph Convolution 计算机科学, 2022, 49(6A): 150-158. https://doi.org/10.11896/jsjkx.210500065 |
[4] | 余本功, 张子薇, 王惠灵. 一种融合多层次情感和主题信息的TS-AC-EWM在线商品排序方法 TS-AC-EWM Online Product Ranking Method Based on Multi-level Emotion and Topic Information 计算机科学, 2022, 49(6A): 165-171. https://doi.org/10.11896/jsjkx.210400238 |
[5] | 徐国宁, 陈奕芃, 陈一鸣, 陈晋音, 温浩. 基于约束优化生成式对抗网络的数据去偏方法 Data Debiasing Method Based on Constrained Optimized Generative Adversarial Networks 计算机科学, 2022, 49(6A): 184-190. https://doi.org/10.11896/jsjkx.210400234 |
[6] | 闫萌, 林英, 聂志深, 曹一凡, 皮欢, 张兰. 一种提高联邦学习模型鲁棒性的训练方法 Training Method to Improve Robustness of Federated Learning 计算机科学, 2022, 49(6A): 496-501. https://doi.org/10.11896/jsjkx.210400298 |
[7] | 郭雨欣, 陈秀宏. 融合BERT词嵌入表示和主题信息增强的自动摘要模型 Automatic Summarization Model Combining BERT Word Embedding Representation and Topic Information Enhancement 计算机科学, 2022, 49(6): 313-318. https://doi.org/10.11896/jsjkx.210400101 |
[8] | 刘凯, 张宏军, 陈飞琼. 基于领域适应嵌入的军事命名实体识别 Name Entity Recognition for Military Based on Domain Adaptive Embedding 计算机科学, 2022, 49(1): 292-297. https://doi.org/10.11896/jsjkx.201100007 |
[9] | 羊洋, 陈伟, 张丹懿, 王丹妮, 宋爽. 对抗攻击威胁基于卷积神经网络的网络流量分类 Adversarial Attacks Threatened Network Traffic Classification Based on CNN 计算机科学, 2021, 48(7): 55-61. https://doi.org/10.11896/jsjkx.210100095 |
[10] | 程思伟, 葛唯益, 王羽, 徐建. BGCN:基于BERT和图卷积网络的触发词检测 BGCN:Trigger Detection Based on BERT and Graph Convolution Network 计算机科学, 2021, 48(7): 292-298. https://doi.org/10.11896/jsjkx.200500133 |
[11] | 王丹妮, 陈伟, 羊洋, 宋爽. 基于高斯增强和迭代攻击的对抗训练防御方法 Defense Method of Adversarial Training Based on Gaussian Enhancement and Iterative Attack 计算机科学, 2021, 48(6A): 509-513. https://doi.org/10.11896/jsjkx.200800081 |
[12] | 陈明豪, 祝跃飞, 芦斌, 翟懿, 李玎. 基于Attention-CNN的加密流量应用类型识别 Classification of Application Type of Encrypted Traffic Based on Attention-CNN 计算机科学, 2021, 48(4): 325-332. https://doi.org/10.11896/jsjkx.200900155 |
[13] | 张栋, 陈文亮. 基于上下文相关字向量的中文命名实体识别 Chinese Named Entity Recognition Based on Contextualized Char Embeddings 计算机科学, 2021, 48(3): 233-238. https://doi.org/10.11896/jsjkx.191200074 |
[14] | 余诗媛, 郭淑明, 黄瑞阳, 张建朋, 苏珂. 嵌套命名实体识别研究进展 Overview of Nested Named Entity Recognition 计算机科学, 2021, 48(11A): 1-10. https://doi.org/10.11896/jsjkx.201100165 |
[15] | 陈德, 宋华珠, 张娟, 周泓林. 融合BERT和记忆网络的实体识别 Entity Recognition Fusing BERT and Memory Networks 计算机科学, 2021, 48(10): 91-97. https://doi.org/10.11896/jsjkx.200900015 |
|