计算机科学 ›› 2018, Vol. 45 ›› Issue (7): 178-185.doi: 10.11896/j.issn.1002-137X.2018.07.031

• 人工智能 • 上一篇    下一篇

区间值决策系统的局部属性约简

尹继亮,张楠,赵立威,陈曼如   

  1. 烟台大学数据科学与智能技术山东省高校重点实验室 山东 烟台264005;
    烟台大学计算机与控制工程学院 山东 烟台264005
  • 收稿日期:2018-03-17 出版日期:2018-07-30 发布日期:2018-07-30
  • 作者简介:尹继亮(1994-),男,硕士生,主要研究方向为粗糙集、数据挖掘与机器学习,E-mail:yinjiliangyt@126.com;张 楠(1979-),男,博士,硕士生导师,CCF会员,主要研究方向为粗糙集、认知信息学和人工智能,E-mail:zhangnan0851@163.com(通信作者);赵立威(1996-),男,主要研究方向为粗糙集、数据挖掘,E-mail:zlwazj1996@163.com。
  • 基金资助:
    本文受国家自然科学基金项目(61403329,61572418,61702439,61572419,61502410),山东省自然科学基金项目(ZR2018BA004,ZR2016FM42),烟台大学研究生科技创新基金项目(YDZD1807)资助。

Local Attribute Reduction in Interval-valued Decision Systems

YIN Ji-liang ,ZHANG Nan ,ZHAO Li-wei ,CHEN Man-ru   

  1. Key Lab for Data Science and Intelligence Technology of Shandong Higher Education Institutes, Yantai University,Yantai,Shandong 264005,China;
    School of Computer and Control Engineering,Yantai University,Yantai,Shandong 264005,China
  • Received:2018-03-17 Online:2018-07-30 Published:2018-07-30

摘要: 区间值决策系统中已有的属性约简工作主要针对决策属性中所有的决策类。针对区间值决策系统中决策属性的某些特定类,引入了区间值决策系统局部约简的概念,提出了部分决策类约简的判定定理;利用差别矩阵方法研究局部约简的结构,并给出了基于差别矩阵的局部约简算法。通过局部约简的概念对区间值决策系统的全局约简结构进行进一步刻画,讨论了不协调区间值决策系统的局部约简和全局约简之间的关系。最后通过相关实验验证了所提算法的可行性和有效性。

关键词: 差别矩阵, 局部约简, 区间值决策系统, 全局约简, 特定类

Abstract: The existing attribute reduction in interval-valued decision system is mainly relative to all decision classes.For some special classes of decision attributes in interval-valued decision system,the concept of local reduction and the judgment theorem of partial decision classes were introduced in this paper.Besides,the structure of local reduction was studied by using the method of discernibility matrix,and the local reduction algorithm based on discernibility matrix was given.The structure of the global reduction in interval-valued decision system was further depicted through the concept of the local reduction,and the relationship between the local reduction and global reduction was discussed.Finally,related experiments were carried out.The experimental results show the feasibility and effectiveness of the proposed algorithm.

Key words: Discernibility matrix, Global reduction, Interval-valued decision system, Local reduction, Specific classes

中图分类号: 

  • TP181
[1]PAWLAK Z.Rough sets[J].International Journal of Computer &Information Sciences,1982,11(5):341-356.
[2]PAWLAK Z.Rough sets:theoretical aspects of reasoning about data[M].Boston:Kluwer Academic Publishers,1992.
[3]WANG G Y,YAO Y Y,YU H.A survey on rough set theory and applications[J].Chinese Journal of Computers,2009,32(7):1229-1246.(in Chinese)
王国胤,姚一豫,于洪.粗糙集理论与应用研究综述[J].计算机学报,2009,32(7):1229-1246.
[4]QIAN Y H,LIANG J Y,PEDRYCZ W,et al.Positive approximation:an accelerator for attribute reduction in rough set theory[J].Artificial Intelligence,2010,174(9):597-618.
[5]CHEN H M,LIT R,RUAN D,et al.A rough-set based incrementalapproach for updating approximations under dynamic main-tenance environments[J].IEEE Transactions on Knowledge and Data Engineering,2013,25(2):274-284.
[6]HU Q H,YU D R,XIE Z X.Information-preserving hybrid data reduction based on fuzzy-rough techniques[J].Pattern Recognition Letters,2006,27(5):414-423.
[7]MIAO D Q,ZHAO Y,YAO Y Y,et al.Relative reducts in consistent and inconsistent decision tables of the Pawlak rough set model[J].Information Sciences,2009,179(24):4140-4150.
[8]JIA X Y,SHANG L,ZHOU B,et al.Generalized attribute reduct in rough set theory[J].Knowledge-Based Systems,2016,91(C):204-218.
[9]LEUNG Y,FISCHER M M,WU W Z,et al.A rough set approach for the discovery of classification rules in interval-valued information systems[J].International Journal of Approximate Reasoning,2008,47(2):233-246.
[10]YANG X B,QI Y,YU D J,et al.α-Dominance relation andrough sets in interval-valued information systems[J].Information Sciences,2015,294(5):334-347.
[11]XU F F,BI Z Q,LEI J S.Approximate reduction for the interval-valued decision table[M]∥Rough Sets and Knowledge Technology.Springer International Publishing,2014:89-100.
[12]ZHANG N,MIAO D Q,YUE X D.Approach-es to knowledge reduction in interval-valued information systems[J].Journal of Computer Research and Development,2010,47(8):1362-1371.(in Chinese)
张楠,苗夺谦,岳晓冬.区间值信息系统的知识约简[J].计算机研究与发展,2010,47(8):1362-1371.
[13]LIU P H,CHEN Z C,QIN K Y.Decision attribute reduction of interval-valued informa-tion systems[J].Computer Engineering and Applications,2009,45(28):148-150.(in Chinese)
刘鹏惠,陈子春,秦克云.区间值信息系统的决策属性约简[J].计算机工程应用,2009,45(28):148-150.
[14]DU W S,HU B Q.Approximate distribution reducts in inconsistent interval-valued ordered decision tables[J].InformationScien-ces,2014,271(7):93-114.
[15]ZHANG N,XU X,TONG X R,et al.Knowledge reduction in inconsistent interval-valued decision systems[J].Journal of Chinese Computer Systems,2017,38(7):1585-1589.(in Chinese)
张楠,许鑫,童向荣,等.不协调区间值决策系统的知识约简[J].小型微型计算机系统,2017,38(7):1585-1589.
[16]DAI J H,WEI B,ZHANG X,et al.Uncertainty measurement for incomplete interval-valued information systems based on α-weak similarity[J].Knowledge-Based Systems,2017,136(11):159-171.
[17]BAGGENSTOSS P M.Class-specific feature sets in classification[J].IEEE Transactions on Signal Processing,1999,47(12):3428-3432.
[18]CHEN D G,ZHAO S Y.Local reduction of decision system with fuzzy rough sets[J].Fuzzy Sets & Systems,2010,161(13):1871-1883.
[19]YAO Y Y,ZHANG X Y.Class-specific attribute reducts inrough set theory[J].Information Sciences,2017,418(38):601-618.
[20]JU H R,LI H X,ZHOU X Z,et al.Spquential three-way classifier with local reduction[J].Computer Science,2017,44(9):34-39.(in Chinese)
鞠恒荣,李华雄,周献中,等.基于Local约简的序贯三支分类器[J].计算机科学,2017,44(9):34-39.
[21]QIAN Y H,LIANG X Y,LIANG J Y,et al.Local rough set:a solution to rough data analysis in big data[J].International Journal of Approximate Reasoning,2018,97(6):38-63.
[22]LIU G L,HUA Z,ZOU J Y.Local attribute reductions for decision tables[J].Information Sciences,2017,422:204-217.
[23]ZHANG X,MEI C L,CHEN D G,et al.Multi-confidence rule acquisition and confidence-preserved attribute reduction in interval-valued decision systems[J].International Journal of Appro-ximate Reasoning,2014,55(8):1787-1804.
[1] 杨文静,张楠,童向荣,杜贞斌.
基于特定类的区间值决策系统的分布约简
Class-specific Distribution Preservation Reduction in Interval-valued Decision Systems
计算机科学, 2020, 47(3): 92-97. https://doi.org/10.11896/jsjkx.190500180
[2] 曹义亲, 谢舒慧.
基于网格搜索的特定类别图像去噪算法
Category-specific Image Denoising Algorithm Based on Grid Search
计算机科学, 2020, 47(11): 168-173. https://doi.org/10.11896/jsjkx.190900004
[3] 樊鑫,陈红梅.
基于差别矩阵和mRMR的分步优化特征选择算法
Stepwise Optimized Feature Selection Algorithm Based on Discernibility Matrix and mRMR
计算机科学, 2020, 47(1): 87-95. https://doi.org/10.11896/jsjkx.181202320
[4] 于天佑, 张楠, 岳晓冬, 童向荣, 孔贺庆.
基于多特定类的序决策表下近似约简
Multi-class-specific Attribute Reduction of Lower Approximation in Ordered Decision Tables
计算机科学, 2019, 46(10): 242-251. https://doi.org/10.11896/jsjkx.180901781
[5] 史进玲,张倩倩,徐久成.
多粒度决策系统属性约简的最优粒度选择
Optimal Granularity Selection of Attribute Reductions in Multi-granularity Decision System
计算机科学, 2018, 45(2): 152-156. https://doi.org/10.11896/j.issn.1002-137X.2018.02.027
[6] 王振,魏玲.
基于单边区间集概念格的不完备形式背景的属性约简
Attribute Reduction of Partially-known Formal Concept Lattices for Incomplete Contexts
计算机科学, 2018, 45(1): 73-78. https://doi.org/10.11896/j.issn.1002-137X.2018.01.011
[7] 李艳,郭娜娜,赵浩.
基于变精度和浓缩布尔矩阵的属性约简
Attribute Reduction Based on Variable Precision Rough Sets and Concentration Boolean Matrix
计算机科学, 2017, 44(Z6): 70-74. https://doi.org/10.11896/j.issn.1002-137X.2017.6A.014
[8] 张楠,许鑫,童向荣,高学义,姜丽丽.
不协调区间值决策系统的分布约简
Distribution Reduction in Inconsistent Interval-valued Decision Systems
计算机科学, 2017, 44(9): 78-82. https://doi.org/10.11896/j.issn.1002-137X.2017.09.016
[9] 龙浩,徐 超.
基于改进差别矩阵的属性约简增量式更新算法
Incremental Updating Algorithm for Attribute Reduction Based on Improved Discernibility Matrix
计算机科学, 2015, 42(6): 251-255. https://doi.org/10.11896/j.issn.1002-137X.2015.06.053
[10] 贺明利,魏玲.
基于优势关系的序形式背景约简
Reduction of Ordered Formal Context Based on Dominance Relation
计算机科学, 2015, 42(6): 46-49. https://doi.org/10.11896/j.issn.1002-137X.2015.06.010
[11] 王婷,徐章艳,陈宇文,岳明.
基于不完备决策表的正区域属性约简的压缩差别矩阵方法
Method of Compressed Discernibility Matrix of the Attribute Reduction Algorithm Based on Incompletion Decision Table
计算机科学, 2014, 41(Z6): 377-382.
[12] 王炜,徐章艳,李晓瑜.
不完备决策表中基于对象矩阵属性约简算法
Attribute Reduction Algorithm Based on Object Matrix in Incomplete Decision Table
计算机科学, 2012, 39(4): 201-204.
[13] 钱进,苗夺谦,张泽华.
云计算环境下差别矩阵知识约简算法研究
Research on Discernibility Matrix Knowledge Reduction Algorithm in Cloud Computing
计算机科学, 2011, 38(8): 193-196.
[14] 张迎春,王宇新,郭禾.
基于有序差别集和属性重要性的属性约简
Attribute Reduction Based on Ordered Discernibility Set and Significance of Attribute
计算机科学, 2011, 38(10): 243-247.
[15] 林晓斌 叶东毅.
一种基于扩展差别矩阵的规则获取方法

计算机科学, 2008, 35(3): 231-233.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!