计算机科学 ›› 2014, Vol. 41 ›› Issue (Z6): 377-382.

• 数据挖掘 • 上一篇    下一篇

基于不完备决策表的正区域属性约简的压缩差别矩阵方法

王婷,徐章艳,陈宇文,岳明   

  1. 广西师范大学计算机科学与信息工程学院 桂林541004;广西师范大学计算机科学与信息工程学院 桂林541004;广西师范大学计算机科学与信息工程学院 桂林541004;广西师范大学计算机科学与信息工程学院 桂林541004
  • 出版日期:2018-11-14 发布日期:2018-11-14
  • 基金资助:
    本文受国家自然科学基金(61262004,4,60963008),广西自然科学基金(2011GXNSFA018163)资助

Method of Compressed Discernibility Matrix of the Attribute Reduction Algorithm Based on Incompletion Decision Table

WANG Ting,XU Zhang-yan,CHEN Yu-wen and YUE Ming   

  • Online:2018-11-14 Published:2018-11-14

摘要: 差别矩阵、二进制差别矩阵方法易懂,易设计,一直以来为广大学者所喜欢。但两方法在运算时会产生大量的重复元素与无用元素(若A是B的子集,则称B是A 的无用元素),这些重复、无用元素会占用大量的空间,影响算法的效率。针对以往文献中基于差别矩阵的属性约简算法存储代价高的问题,结合二进制差别矩阵引入二叉树(B_Tree)的设计思想,提出基于压缩存储的属性约简算法。该算法将二进制差别矩阵的属性集存储在二叉树(B_Tree)的相应路径上,通过边存边剪枝(剪枝的思想就是从二叉树上删除那些在同一条路径上的重复、无用属性集)的思想,有效地降低了算法的时空效率。最后通过实例分析验证了新算法的有效性和可行性。

关键词: 粗糙集,差别矩阵,二叉树,属性约简 中图法分类号TP18文献标识码A

Abstract: Discernibility matrix and binary discernibility matrix method is easy to understand and design,hich has aroused great concern by many scholar.But the two methods produce a large number of repeated and useless elements (if A is the subset of B,B is the useless element of A) on the fly.These repeated and useless elements occupy a lot of space and will affect the efficiency of the algorithm.Attribute reduction based on discernibility matrix methods exist the high cost of storage problem in previous literatures.This paper propose a attribute reduction algorithm based on compressed storage in the thought of combining the binary discernibility matrix with the binary tree (B_Tree) .The algorithm store the binary discernibility matrix attribute sets in the binary tree (B_Tree).The algorithm effectively reduce the time and space efficiency by storage while pruning(pruning is a thought,which delete those repeated and useless attribute sets from binary tree on the same path).Finally the analysis of example proves the feasibility and effectiveness of the new algorithm.

Key words: Rough set,Discernibility-matrix,Binary tree,Attribute Reduction

[1] Pawlak Z.Rough sets[J].Int J of Information and Computer Science,1982,1(5):341-346
[2] Pawlak Z.Rough set approach to multi-attribute decision analysis[J].European J of Operational Research,1994,2(3):443-459
[3] 徐章艳,杨炳儒,宋威.基于简化的二进制差别矩阵的快速属性约简算法[J].计算机科学,2006,3(4):155-158
[4] 支天去,苗夺谦.二进制可辨识矩阵的变换及高效属性约简算法的构造[J].计算机科学,2002,9(2):140-142
[5] 舒文豪,徐章艳,等.一种快速不完备决策表的差别矩阵属性约简算法[J].小型微型计算机系统,2011,2(9):103-110
[6] 徐章艳,杨炳儒,宋威,等.几种不同属性约简的比较[J].小型微型计算机系统,2008,29(5):848-853
[7] 黄丽宇,徐章艳,等.基于改进的FP树的快速属性约简算法[J].计算机工程与应用.2010,6(35):152-191
[8] Yang Ming,Yang Ping.A novel condensing tree structureforrough set feature selection[J].Neurocomputing,2008,1(4-6):1092-1100
[9] Yang Ming,Yang Ping.A novel approach to improving。C-Tree for feature selection[J].Applied Soft Computing,2010,11(2):1924-1931
[10] 杨明,吕静.一种基于 C-Tree 的属性约简增量式更新算法[J].控制与决策,2012,7(12):1769-1775
[11] 高静,韩智东.利用差别矩阵构造决策树[J].计算机工程与应用,2011,7(33):18-21
[12] Kryszkiewicz M.Rough set approach to incomplete information system[J].Information Science,1998,2(1):39-49
[13] Kryszkiewicz M.Rules in incomplete information systems[J].Information Sciences,1999,3(2):271-292

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!