计算机科学 ›› 2021, Vol. 48 ›› Issue (2): 64-69.doi: 10.11896/jsjkx.200800205

• 新型分布式计算技术与系统* 上一篇    下一篇

基于随机几何的无线中继网络上行链路精细化性能分析

孙海华1, 周思源1,2, 谭国平1,2, 张芝2   

  1. 1 河海大学计算机与信息学院 南京211100
    2 江苏智能交通及智能驾驶研究院 南京210019
  • 收稿日期:2020-08-31 修回日期:2020-11-27 出版日期:2021-02-15 发布日期:2021-02-04
  • 通讯作者: 周思源(siyuan.zhou@hhu.edu.cn)
  • 作者简介:shh_96@163.com
  • 基金资助:
    国家自然科学基金(61701168,61832005);中央高校基本科研业务费(2019B15614);中国博士后科研基金(2019M651546);江苏省交通运输科技项目(2018Y45)

Fine-grained Performance Analysis of Uplink in Wireless Relay Network Based on Stochastic Geometry

SUN Hai-hua1, ZHOU Si-yuan1,2, TAN Guo-ping1,2, ZHANG Zhi2   

  1. 1 School of Computer and Information,Hohai University,Nanjing 211100,China
    2 Jiangsu Intelligent Transportation and Intelligent Driving Research Institute,Nanjing 210019,China
  • Received:2020-08-31 Revised:2020-11-27 Online:2021-02-15 Published:2021-02-04
  • About author:SUN Hai-hua,born in 1996,postgra-duate.His main research interests include wireless communication theory and cooperative communications.
    ZHOU Si-yuan,born in 1985,Ph.D,associate professor.His main research interests include wireless communication theory,cooperative communications,beyond 5G communication and Internet of Things.
  • Supported by:
    The National Natural Science Foundation of China (61701168,61832005),Fundamental Research Funds for the Central Universities (2019B15614),China Postdoctoral Science Funded Project (2019M651546) and Jiangsu Province Transportation Technology Transformation Project (2018Y45).

摘要: 无线网络用户呈现数量剧增、分布灵活多变的趋势,而传统蜂窝网络的拓扑结构已不能满足所有用户的服务需求。为改善小区边缘区域的上行覆盖率,构建了一种基于随机几何的无线中继网络模型,其中基站服从泊松点过程分布,中继节点围绕基站服从截断式聚类过程分布。在此网络中,中继节点通过放大转发策略将小区边缘用户的数据上传至基站。为了精细化分析网络模型的性能,文中基于信干比理论推导出每跳链路的条件覆盖率的矩,从而获得信干比 meta分布的解析表达式,即条件覆盖率的分布。相比传统的针对覆盖率期望值的性能分析,基于信干比meta分布的分析能够揭示出条件覆盖率大于一定阈值的网络用户比例。实验仿真结果验证了所推导出的理论表达式的正确性。另外,通过调整中继节点分布的半径以及方差参数等,研究了中继节点的分布参数对信干比meta分布的影响。最后,通过比较上行功率控制的功率补偿因子对网络覆盖率的影响,为后期研究网络性能优化提供了帮助。

关键词: meta分布, 覆盖率, 功率控制, 随机几何, 中继网络

Abstract: As the number of wireless network users increases dramatically,the network topology of traditional cellular networks can't meet the performance requirements of all users.In order to improve the uplink coverage probability in the cell-edge area,an uplink amplify-and-forward (AF) relay network model in which relays are deployed around the base station is established.The base stations and relays are respectively modeled as the Poisson point process (PPP) and the truncated Thomas cluster process (TCP),and relay node amplifies and forwards the data of cell-edge users to the base station.We drive a fine-grained performance analysis of the network model,i.e.,SIR meta distribution which is the distribution of the conditional coverage probability (CCP).The moments of the CCP in the relays network are analytically derived and the approximation of SIR meta distribution is presented in semiclosed-form expression.In contrast to the conventional performance analysis based on the coverage probability,meta distribution can intuitively show the proportion of uplinks in the network whose CCP is greater than a certain value.And the accuracy of the theoretical analysis is verified by simulations.Besides,the effect of the relay distribution parameters on the meta distribution is studied by adjusting the parameters of the relay distribution,such as radius and variance.Finally,the effects of power compensation factor of the uplink power control on the network coverage probability are compared,which provides help for the later research on network performance optimization.

Key words: Coverage probability, meta distribution, Power control, Relay network, Stochastic geometry

中图分类号: 

  • TN925
[1] SHAMGANTH K,SIBLEY M J N.A survey on relay selection in cooperative device-to-device (D2D) communication for 5G cellular networks[C]//2017 International Conference on Energy,Communication,Data Analytics and Soft Computing (ICECDS).Chennai:IEEE,2017:42-46.
[2] ELKOTBY H,VU M.Uplink User-Assisted Relaying in Cellular Networks[J].IEEE Transactions on Wireless Communications,2015,14(10):5468-5483.
[3] WU S,ATAT R,MASTRONARDE N,et al.Improving theCoverage and Spectral Efficiency of Millimeter-Wave Cellular Networks Using Device-to-Device Relays[J].IEEE Transactions on Communications,2018,66(5):2251-2265.
[4] XIAO S,ZHOU X,YUAN W Y,et al.Energy-efficient relay placement and power allocation for two-hop D2D relay networks[C]//2017 IEEE International Conference on Communications (ICC).Paris:IEEE,2017:1-6.
[5] WU G,XU P.Analysis of capacity in vehicular device-to-device relay networks with multi-user case[J].IET Communications,2018,12(12):1460-1467.
[6] LI W,FAN B Y.Applications Research of Network Coding in Wireless Relay Networks[J].Computer Engineering,2011,37(7):15-17.
[7] DENG G H,SHAO Y B,XIA T F.Cooperation Multiplexing:Research on Realizing Higher Spectrum Efficiency in Multi-antenna Relay Network[J].Journal of Chongqing University of Technology (Natural Science),2011(12):94-99.
[8] CHU W S,ZHANG Q G.Power Allocation Optimization Strategy Based on Full-du185plex Relay Network [J].Computer Engineering,2018,44(1):149.
[9] ELSAWY H,HOSSAIN E,HAENGGI M.Stochastic geometry for modeling,analysis,and design of multi-tier and cognitive cellular wireless networks:A survey[J].IEEE Communications Surveys & Tutorials,2013,15(3):996-1019.
[10] SINGH S,ZHANG X,ANDREWS J G.Joint rate and SINRcoverage analysis for decoupled uplink-downlink biased cell associations in HetNets[J].IEEE Transactions on Wireless Communications,2015,14(10):5360-5373.
[11] YU J F,SUN C,WANG S X,et al.Research on Uplink Interfe-rence Coordination Technology in LTE[J].Computer Enginee-ring,2012,38(20):56-59.
[12] ZHONG H D,XU K,HOU L Y.Uplink Adaptive Power Control in Ka Band Satellite Communication[J].Computer Engineering,2009,35(10):107-108.
[13] LIU F,SHANG Q F,HUANG L F,et al.TD-LTE Terminal Performance Optimization[J].Computer Engineering,2011,37(19):255-257.
[14] MARTIN-VEGA F J,GOMEZ G,AGUAYO-TORRES M C,et al.Analytical Modeling of Interference Aware Power Control for the Uplink of Heterogeneous Cellular Networks[J].IEEE Transactions on Wireless Communications,2016,15(10):6742-6757.
[15] HAENGGI M.User Point Processes in Cellular Networks[J].IEEE Wireless Communications Letters,2017,6(2):258-261.
[16] HAENGGI M.Stochastic Geometry for Wireless Networks[M].Cambridge,U.K:Cambridge Univ.Press,2012.
[17] ZHOU S,NORDIO A,CHIASSERINI C,et al.MIMO RelayNetworks:Scheduling and Outage Probability[J].IEEE Wireless Communications Letters,2019,8(4):1256-1259.
[18] HAENGGI M.The meta distribution of the SIR in poisson bipolar and cellular networks[J].IEEE Transactions on Wireless Communications,2016,15(4):2577-2589.
[19] SALEHI M,TABASSUM H,HOSSAIN E.Meta Distributionof SIR in Large-Scale Uplink and Downlink NOMA Networks[J].IEEE Transactions on Communications,2019,67(4):3009-3025.
[20] IBRAHIM H,TABASSUM H,NGUYEN U T.Meta Distribution of SIR in Dual-Hop Internet-of-Things (IoT) Networks[C]//ICC 2019-2019 IEEE International Conference on Communications (ICC).Shanghai:IEEE,2019:1-7.
[1] 程云飞, 田红心, 刘祖军.
NOMA系统异构网络中联合用户关联和功率控制协同优化
Collaborative Optimization of Joint User Association and Power Control in NOMA Heterogeneous Network
计算机科学, 2021, 48(3): 269-274. https://doi.org/10.11896/jsjkx.191100213
[2] 刘芳, 洪玫, 王潇, 郭丹, 杨正卉, 黄小丹.
面向Java的Randoop自动化单元测试生成工具性能分析
Performance Analysis of Randoop Automated Unit Test Generation Tool for Java
计算机科学, 2020, 47(9): 24-30. https://doi.org/10.11896/jsjkx.200200116
[3] 钟旭东,何元智,任保全,董飞鸿.
基于合作博弈的认知卫星网络信道分配与上行功率控制算法
Channel Allocation and Power Control Algorithm for Cognitive Satellite Networks Based on Cooperative Game Theory
计算机科学, 2020, 47(1): 252-257. https://doi.org/10.11896/jsjkx.181202352
[4] 张绘娟, 张达敏, 闫威, 陈忠云, 辛梓芸.
异构网络中基于吞吐量优化的资源分配机制
Throughput Optimization Based Resource Allocation Mechanism in Heterogeneous Networks
计算机科学, 2019, 46(10): 109-115. https://doi.org/10.11896/jsjkx.180901787
[5] 叶佳, 葛红军, 曹春, 朱晋, 张营.
规则驱动的Android应用DFS测试技术
Rule-driven DFS Testing Technology for Android Application
计算机科学, 2018, 45(9): 99-103. https://doi.org/10.11896/j.issn.1002-137X.2018.09.015
[6] 王振朝,赵云,薛文玲.
下含D2D蜂窝网中基于公平性原理的功率控制
Power Control Based on Fairness in D2DUnderlaid Cellular Networks
计算机科学, 2018, 45(7): 104-109. https://doi.org/10.11896/j.issn.1002-137X.2018.07.017
[7] 李方伟, 张琳琳, 朱江.
D2D通信网络中一种基于时间反演的无线资源优化机制
Radio Resource Optimization Mechanism Based on Time-reversal in Device-to-Device Communication Network
计算机科学, 2018, 45(10): 78-82. https://doi.org/10.11896/j.issn.1002-137X.2018.10.015
[8] 张培,张建明,王良民.
一种全双工认知中继网络中实现能量高效的安全传输方法
Design for Improving Energy-efficiency and Ensuring Physical-layer Security in Full-duplex Cognitive Relay Networks
计算机科学, 2017, 44(9): 172-177. https://doi.org/10.11896/j.issn.1002-137X.2017.09.033
[9] 杨大禹,李敬兆,任萍.
基于噪声模型下D2D蜂窝系统的多用户合作功率控制分配方案
Multi-user Cooperative Power Control Allocation Scheme for D2D Cellular System Based on Noise Model
计算机科学, 2017, 44(7): 98-103. https://doi.org/10.11896/j.issn.1002-137X.2017.07.018
[10] 李树芳,安金霞,刘洋,陈良.
采用Clang/LLVM的C++源代码覆盖率分析插装方法
Approach to C++ Code Instrumentation for Coverage Analysis with Clang/LLVM
计算机科学, 2017, 44(11): 191-194. https://doi.org/10.11896/j.issn.1002-137X.2017.11.029
[11] 高锐锋,倪丹艳,包志华,胡英东.
基于时频资源分配的认知无线中继网络物理层安全研究
Time-bandwidth Allocation Scheme for Physical Layer Security in Cooperative Cognitive Radio Networks
计算机科学, 2016, 43(4): 163-166. https://doi.org/10.11896/j.issn.1002-137X.2016.04.033
[12] 黄胜,刘广钟,徐明.
一种基于虚拟力的分布式Voronoi控制策略
Distributed Voronoi Control Strategy Based on Virtual Force
计算机科学, 2016, 43(10): 125-129. https://doi.org/10.11896/j.issn.1002-137X.2016.10.023
[13] 杨劲松,曾碧卿,胡翩翩.
认知无线电网络中基于和声搜索的频谱分配与功率控制
Spectrum Allocation and Power Control Based on Harmony Search Algorithm in Cognitive Radio Network
计算机科学, 2015, 42(Z11): 258-262.
[14] 张 翅,曾碧卿,杨劲松,谢晓虹.
OFDMA认知无线电网络中面向功率控制的频谱定价与分配
Power Control-oriented Spectrum Pricing and Allocation in OFDMA Cognitive Radio Networks
计算机科学, 2015, 42(3): 85-90. https://doi.org/10.11896/j.issn.1002-137X.2015.03.018
[15] 鲁蔚锋,於科远,陈思光.
移动多跳中继网络中的混合式认证延时性能分析
Performance Analysis of Time-delay of Hybrid Authentication in Mobile Multihop Relay Networks
计算机科学, 2015, 42(2): 46-49. https://doi.org/10.11896/j.issn.1002-137X.2015.02.010
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!