计算机科学 ›› 2019, Vol. 46 ›› Issue (10): 109-115.doi: 10.11896/jsjkx.180901787

• 网络与通信 • 上一篇    下一篇

异构网络中基于吞吐量优化的资源分配机制

张绘娟, 张达敏, 闫威, 陈忠云, 辛梓芸   

  1. (贵州大学大数据与信息工程学院 贵阳550025)
  • 收稿日期:2018-09-22 修回日期:2019-01-24 出版日期:2019-10-15 发布日期:2019-10-21
  • 通讯作者: 张达敏(1967-),男,博士,教授,主要研究方向为网络通信、网络拥塞控制,E-mail:1203813362@qq.com。
  • 作者简介:张绘娟(1994-),女,硕士生,主要研究方向为网络通信、优化计算;闫威(1993-),男,硕士生,主要研究方向为网络通信、优化计算;陈忠云(1989-),男,硕士生,主要研究方向为网络通信、优化计算;辛梓芸(1994-),女,硕士生,主要研究方向为网络通信、优化计算。
  • 基金资助:
    本文受贵州省自然科学基金项目(黔科合基础1047号)资助。

Throughput Optimization Based Resource Allocation Mechanism in Heterogeneous Networks

ZHANG Hui-juan, ZHANG Da-min, YAN Wei, CHEN Zhong-yun, XIN Zi-yun   

  1. (College of Big Data and Information Engineering,Guizhou University,Guiyang 550025,China)
  • Received:2018-09-22 Revised:2019-01-24 Online:2019-10-15 Published:2019-10-21

摘要: 针对异构蜂窝网络中D2D(Device-to-Device)通信用户复用蜂窝用户上行信道产生的干扰问题和频谱资源分配优化问题,提出一种基于改进粒子群算法的D2D通信资源分配算法,并将该算法与改进的闭环功率控制算法相结合进行资源管理。此方案通过设置信干噪比(Signal-to-Interference Noise Ratio,SINR)门限值来保证用户的通信服务质量(Quality of Service,QoS),使用改进粒子群算法为D2D用户进行资源分配后,再通过基于接收信干噪比的闭环功率控制算法动态调整用户的发射功率,以减少干扰。仿真结果表明,该方案能够有效抑制异构通信系统中由于引入D2D用户导致的干扰问题,并提高频谱资源的利用率和系统的吞吐量。

关键词: D2D通信, 闭环功率控制, 粒子群优化算法, 异构网络, 资源分配

Abstract: Aiming at the problem of interference and spectrum resource allocation optimization caused by D2D (Device-to -Device)communication multiplexing uplink channel of heterogeneous cellular networks,this paper proposed a resource allocation scheme based on improved particle swarm optimization algorithm,and combined the proposed algorithm with the improved closed-loop power control algorithm for resource management.This scheme ensures user’s Quality of Service (QoS) by setting the Signal-to-Interference Noise Ratio (SINR) threshold.After the resource allocation is performed for the D2D user by using the improved particle swarm optimization algorithm,the user’s transmit power is dynamically adjusted by the closed-loop power control algorithm based on the received signal-to-interference noise ratio to reduce interference.Simulation results show that the proposed scheme can effectively suppress the interference problems caused by the introduction of D2D users in heterogeneous communication systems,and improve the utilization of spectrumand the throughput of the system.

Key words: Closed-loop power control, D2D communication, Heterogeneous network, Particle swarm optimization, Resource allocation

中图分类号: 

  • TP393
[1]ALMOFARI N H,KISHK S,ZAKI F W.Auction based algorithm for distributed resource allocation in multitier-heteroge-neous cellular networks[C]//International Conference on Computer Engineering & Systems.IEEE,2017:426-433.
[2]CHEN Y,AI B,NIU Y,et al.Resource allocation for Device-to-Device communications underlaying heterogeneous cellular networks using coalitional games[J].IEEE Transactions on Wireless Communications,2018,17(6):4163-4176.
[3]YANG H H,LEE J,QUEK T Q S.Heterogeneous cellular network with energy harvesting based D2D communication[J].IEEE Transactions on Wireless Communications,2016,15(2):1406-1419.
[4]HAMDI M,YUAN D,ZAIED M.GA-based scheme for fair joint channel allocation and power control for underlaying D2D multicast communications[C]//International Wireless Communications and Mobile Computing Conference.IEEE,2017:446-451.
[5]KAZMI S M A,TRAN N H,SAAD W,et al.Mode Selection and Resource Allocation in Device-to-Device Communications:A Matching Game Approach[J].IEEE Transactions on Mobile Computing,2017,16(11):3126-3141.
[6]ALQERM I,SHIHADA B.Sophisticated Online Learning Sche-me for Green Resource Allocation in 5G Heterogeneous Cloud Radio Access Networks[J].IEEE Transactions on Mobile Computing,2018,17(10):2423-2437.
[7]PÉREZ-ROMERO J,SÁNCHEZ-GONZÁLEZ J,AGUST R, et al.Power-Efficient resource allocation in a heterogeneous network with cellular and D2D Capabilities[J].IEEE Transactions on Vehicular Technology,2016,65(11):9272-9286.
[8]CELIK A,RADAYDEH R M,AL-QAHTANI F S,et al.Joint interference management and resource allocation for device-to-device(D2D) communications underlying downlink/uplink decoupled (DUDe) heterogeneous networks[C]//IEEE International Conference on Communications.IEEE,2017.
[9]DOMINIC S,JACOB L.Distributed Resource Allocation for D2D Communications Underlaying Cellular Networks in Time-Varying Environment[J].IEEE Communications Letters,2017,22(2):388-391.
[10]JIANG F,WANG B C,SUN C Y,et al.Resource allocation and dynamic power control for D2D communication underlaying uplink multi-cell networks[J].Wireless Networks,2018,24(2):549-563.
[11]SAEED A,KATRANARAS E,DIANATI M,et al.Dynamic femtocell resource allocation for managing inter-tier interference in downlink of heterogeneous networks[J].Iet Communications,2016,10(6):641-650.
[12]SALAMEH H B.Efficient Resource Allocation for Multicell Heterogeneous Cognitive Networks With Varying Spectrum Availability[J].IEEE Transactions on Vehicular Technology,2016,65(8):6628-6635.
[13]WANG H,LEUNG S H,SONG R.Uplink Area Spectral Efficiency Analysis for Multichannel Heterogeneous Cellular Networks With Interference Coordination[J].IEEE Access,2018,6(1):14485-14497.
[14]ELSHERIF A R,DING Z,LIU X,et al.Resource allocation in Two-Tier heterogeneous networks through Enhanced Shadow Chasing[J].IEEE Transactions on Wireless Communications,2013,12(12):6439-6453.
[15]ZHENG D,HE C,JIANG L,et al.QoS based resource allocation formulti-D2D communications in heterogeneous networks[C]//IEEE International Conference on Communication workshop.IEEE,2015:602-607.
[16]YUAN Q,SUN Y C,LI J L,et al.A LTE uplink closed loop power control algorithm based ondivision of UEs[J].Journal of Chongqing University of Posts and Telecommunications(Natural Science),2013,25(3):305-309.(in Chinese)
袁泉,孙彦超,李校林,等.一种基于用户划分的LTE上行闭环功率控制算法[J].重庆邮电大学学报(自然科学版),2013,25(3):305-309.
[17]SUN S,SHIN Y.Resource allocation for D2D communication using Particle Swarm Optimization in LTE networks[C]//International Conference on Information and Communication Technology Convergence.IEEE,2014:371-376.
[18]NIE S,FAN Z,ZHAO M,et al.Q-learning based power control algorithm for D2D communication[C]//IEEE,International Symposium on Personal,Indoor,and Mobile Radio Communications.IEEE,2016:1-6.
[19]SONG Q,WANG X,QIU T,et al.An Interference Coordination based Distributed Resource Allocation Scheme in Heterogeneous Cellular Networks[J].IEEE Access,2017,5:2152-2162.
[20]SUN S,KIM K Y,SHIN O S,et al.Device-to-Device resource allocation in LTE-advanced networks byhybrid particle swarm optimization and genetic algorithm[J].Peer-to-Peer Networ-king and Applications,2016,9(5):945-954.
[21]TANG R,DONG J,ZHU Z,et al.Resource Allocation for Underlaid Device-to-Device Communication by Incorporating Both Channel Assignment and Power Control[C]//International Conference on Communication Systems & Network Technologies.IEEE,2015:432-436.
[22]MIN H,SEO W,LEE J,et al.Reliability improvement using receive mode selection in the Device-to-Device uplink period underlaying cellular networks[J].IEEE Transactions on Wireless Communications,2011,10(2):413-418.
[23]EBERHART,SHI Y.Particle swarm optimization develop-ments,applications and resources[C]//Proceedings of the 2001 Congress on Evolutionary Computation.IEEE,2002:81-86.
[24]CUI H M,ZHU Q B.Convergence analysis and parameter selection in particle swarm optimization[J].Computer Engineering and Applications,2007,43(23):89-91,131.(in Chinese)
崔红梅,朱庆保.微粒群算法的参数选择及收敛性分析[J].计算机工程与应用,2007,43(23):89-91,131.
[25]GAO H J,WANG L.Bird swarm algorithm based on dynamic inertia weight[J/OL].Application Research of Computers,2019,36(5).[2018-09-21].http://kns.cnki.net/kcms/detail/51.1196.TP.20180314.1730.038.html.(in Chinese)
高宏进,王力.一种基于动态惯性权重的鸟群优化算法[J/OL].计算机应用研究,2019,36(5).[2018-09-21].http://kns.cnki.net/kcms/detail/51.1196.TP.20180314.1730.038.html.
[26]KENNEDY J,EBERHART R C.A discrete binary version of the particle swarm algorithm[C]//IEEE International Confe-rence on Systems,Man,and Cybernetics,Computational Cybernetics and Simulation.IEEE,2002:4104-4108.
[27]HAIDER A,LEE S H,HWANG S H,et al.Uplinkopen loop power control for LTE Het-Net[C]//Ursi-Asia-Pacific Radio Science Conference.IEEE,2017:83-85.
[1] 黄丽, 朱焱, 李春平.
基于异构网络表征学习的作者学术行为预测
Author’s Academic Behavior Prediction Based on Heterogeneous Network Representation Learning
计算机科学, 2022, 49(9): 76-82. https://doi.org/10.11896/jsjkx.210900078
[2] 于滨, 李学华, 潘春雨, 李娜.
基于深度强化学习的边云协同资源分配算法
Edge-Cloud Collaborative Resource Allocation Algorithm Based on Deep Reinforcement Learning
计算机科学, 2022, 49(7): 248-253. https://doi.org/10.11896/jsjkx.210400219
[3] 唐枫, 冯翔, 虞慧群.
基于自适应知识迁移与资源分配的多任务协同优化算法
Multi-task Cooperative Optimization Algorithm Based on Adaptive Knowledge Transfer andResource Allocation
计算机科学, 2022, 49(7): 254-262. https://doi.org/10.11896/jsjkx.210600184
[4] 李梦菲, 毛莺池, 屠子健, 王瑄, 徐淑芳.
基于深度确定性策略梯度的服务器可靠性任务卸载策略
Server-reliability Task Offloading Strategy Based on Deep Deterministic Policy Gradient
计算机科学, 2022, 49(7): 271-279. https://doi.org/10.11896/jsjkx.210600040
[5] 刘漳辉, 郑鸿强, 张建山, 陈哲毅.
多无人机使能移动边缘计算系统中的计算卸载与部署优化
Computation Offloading and Deployment Optimization in Multi-UAV-Enabled Mobile Edge Computing Systems
计算机科学, 2022, 49(6A): 619-627. https://doi.org/10.11896/jsjkx.210600165
[6] 周天清, 岳亚莉.
超密集物联网络中多任务多步计算卸载算法研究
Multi-Task and Multi-Step Computation Offloading in Ultra-dense IoT Networks
计算机科学, 2022, 49(6): 12-18. https://doi.org/10.11896/jsjkx.211200147
[7] 邱旭, 卞浩卜, 吴铭骁, 朱晓荣.
基于5G毫米波通信的高速公路车联网任务卸载算法研究
Study on Task Offloading Algorithm for Internet of Vehicles on Highway Based on 5G MillimeterWave Communication
计算机科学, 2022, 49(6): 25-31. https://doi.org/10.11896/jsjkx.211100198
[8] 胥昊, 曹桂均, 闫璐, 李科, 王振宏.
面向铁路集装箱的高可靠低时延无线资源分配算法
Wireless Resource Allocation Algorithm with High Reliability and Low Delay for Railway Container
计算机科学, 2022, 49(6): 39-43. https://doi.org/10.11896/jsjkx.211200143
[9] 沈家芳, 钱丽萍, 杨超.
面向集能型中继窄带物联网的非正交多址接入和多维网络资源优化
Non-orthogonal Multiple Access and Multi-dimension Resource Optimization in EH Relay NB-IoT Networks
计算机科学, 2022, 49(5): 279-286. https://doi.org/10.11896/jsjkx.210400239
[10] 潘燕娜, 冯翔, 虞慧群.
基于自适应资源分配池的竞争合作群协同优化算法
Competitive-Cooperative Coevolution for Large Scale Optimization with Computation Resource Allocation Pool
计算机科学, 2022, 49(2): 182-190. https://doi.org/10.11896/jsjkx.201200012
[11] 蒲实, 赵卫东.
一种面向动态科研网络的社区检测算法
Community Detection Algorithm for Dynamic Academic Network
计算机科学, 2022, 49(1): 89-94. https://doi.org/10.11896/jsjkx.210100023
[12] 屈立成, 吕娇, 屈艺华, 王海飞.
基于模糊神经网络的运动目标智能分配定位算法
Intelligent Assignment and Positioning Algorithm of Moving Target Based on Fuzzy Neural Network
计算机科学, 2021, 48(8): 246-252. https://doi.org/10.11896/jsjkx.200600050
[13] 王聪, 魏成强, 李宁, 马文峰, 田辉.
一种H2H和M2M混合场景下的前导码资源动态分配机制
Dynamic Allocation Mechanism of Preamble Resources Under H2H and M2M Coexistence Scenarios
计算机科学, 2021, 48(5): 283-288. https://doi.org/10.11896/jsjkx.200300019
[14] 程云飞, 田红心, 刘祖军.
NOMA系统异构网络中联合用户关联和功率控制协同优化
Collaborative Optimization of Joint User Association and Power Control in NOMA Heterogeneous Network
计算机科学, 2021, 48(3): 269-274. https://doi.org/10.11896/jsjkx.191100213
[15] 李振江, 张幸林.
减少核心网拥塞的边缘计算资源分配和卸载决策
Resource Allocation and Offloading Decision of Edge Computing for Reducing Core Network Congestion
计算机科学, 2021, 48(3): 281-288. https://doi.org/10.11896/jsjkx.200700025
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!