计算机科学 ›› 2021, Vol. 48 ›› Issue (7): 77-85.doi: 10.11896/jsjkx.210300258
所属专题: 人工智能安全
暴雨轩, 芦天亮, 杜彦辉, 石达
BAO Yu-xuan, LU Tian-liang, DU Yan-hui, SHI Da
摘要: 针对深度伪造视频检测存在的面部特征提取不充分的问题,提出了改进的ResNet(i_ResNet34)模型和3种基于信息删除的数据增强方式。首先,优化ResNet网络,使用分组卷积代替普通卷积,在不增加模型参数的前提下提取更丰富的人脸面部特征;接着改进模型虚线残差结构的shortcut分支,通过最大池化层完成下采样操作,减少视频帧中人脸面部特征信息的损失,然后在卷积层后引入通道注意力层,增加提取关键特征通道的权重,提升特征图的通道相关性。最后,利用i_ResNet34模型对原数据集及3种基于信息删除的数据增强方式扩充后的数据集进行训练,其在FaceForensics++的两类数据集Face-Swap和Deepfakes上的检测准确率分别达到了99.33%和98.67%,优于现有的主流算法,从而验证了所提方法的有效性。
中图分类号:
[1]BBC Bitesize.“Deepfakes:What are They and Why Would IMake One?” [OL].http://www.bbc.co.uk/bitesize/articles/zfkwcqt. [2]BAO Y X,LU T L,DU Y H.Overview of Deepfake Video Detection Technology[J].Computer Science,2020,47(9):283-292. [3]KOOPMAN M,RODRIGUEZ A M,GERADTS Z.Detection of Deepfake Video Manipulation[C]//The 20th Irish Machine Vision and Image Processing Conference (IMVIP).2018:133-136. [4]LI J C,LIU B B,HU Y J,et al.Deepfake Video Detection Based on Consistency of Illumination Direction[J].Journal of Nanjing University of Aeronautics & Astronautics,2020,52(5):760-767. [5]MATERN F,RIESS C,STAMMINGER M.Exploiting Visual Artifacts to Expose Deepfakes and Face Manipulations[C]//Proceedings of 2019 IEEE Winter A pplications of Computer Vision Workshops (WACVW).IEEE,2019:83-92. [6]YANG X,LI Y,LYU S.Exposing Deepfakes Using Inconsistent Head Poses[C]//Proceedings of 2019 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP).IEEE,2019:8261-8265. [7]DURALL R,KEUPER M,PFREUNDT F J,et al.Unmasking deepfakes with simple features[J].arXiv:1911.00686,2019. [8]RAHMOUNI N,NOZICK V,YAMAGISHI J,et al.Distingui-shing computer graphics from natural images using convolution neural networks[C]//IEEE Workshop on Information Forensics and Security.2017:1-6. [9]AFCHAR D,NOZICK V,YAMAGISHI J.et al.Mesonet:acompact facial video forgery detection network[C]//IEEE International Workshop on Information Forensics and Security (WIFS’18).2018:1-7. [10]ZHOU P,HAN X,MORARIU V I,et al.Learning Rich Features for Image Manipulation Detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:1053-1061. [11]NGUYEN H H,YAMAGISHI J,ECHIZEN I.Capsule-forensics:Using Capsule Networks to Detect Forged Images and Vi-deos[C]//Proceedings of 2019 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP).IEEE,2019:2307-2311. [12]WU X,JIA S J.Face swapping detection based on multi-channel attention mechanism[J/OL].Computer Engineering:http://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=JSJC20210309002&v=g9BjGJf5ZLXy-78n4jlJAkrMIf9WfK22uyNI%25mmd2FoMZhYd%25mmd2B-ZyJoAIHxgsHFuBZk4eeGN. [13]HU Y J,GAO Y F,LIU B B,et al.Deepfake Videos Detection Based on Image Segmentation withDeep Neural Networks[J].Journal of Electronics & Information Technology,2021,43(1):162-170. [14]SABIR E,CHENG J,JAISWAL A,et al.Recurrent Convolutional Strategies for Face Manipulation Detection in videos[J].Interfaces (GUI),2019,3:1. [15]LI Y,CHANG M C,LYU S.In Ictu Oculi:Exposing AI Created Fake Videos by Detecting Eye Blinking[C]//2018 IEEE International Workshop on Information Forensics and Security (WIFS).IEEE,2018:1-7. [16]AMERINI I,GALTERI L,CALDELLI R,et al.Deepfake Video Detection through Optical Flow based CNN[C]//Proceedings of the IEEE International Conference on Computer Vision Workshops.2019:1205-1207. [17]ZHENG B W,XIA H W,CHEN R D,et al.Exposing DeepFake Videos Based Convolutional LSTM Network[J/OL].Laser & Optoelectronics Progress.http://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=JGDJ2021031100H&v=2fqOuK4zqEKYz%25mmd2BwfP0UoP-60YtASzh6HtS%25mmd2B3KmaItdtD1HZNzgPIh1HjtsAoOg9bl. [18]ZHANG Y X,LI G,CAO Y,et al.A Method for Detecting Human-face-tampered Videos based on Interframe Difference[J].Journal of Cyber Security,2020,5(2):49-72. [19]DENG J,GUO J,ZHOU Y,et al.Retinaface:Single-stage dense face localisation in the wild[J].arXiv:1905.00641,2019. [20]ZHONG Z,ZHENG L,KANG G,et al.Random erasing dataaugmentation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020,34(7):13001-13008. [21]CHEN P,LIU S,ZHAO H,et al.Gridmask data augmentation[J].arXiv:2001.04086,2020. [22]HE K M,ZHANG X Y,RENS Q,et al.Deep residual learningfor image recognition[C]//Proceedings of 2016 IEEE Confe-rence on Computer Vision and Pattern Recognition.Las Vegas,USA:IEEE,2016:770-778. [23]XIE S,GIRSHICK R,DOLLÁR P,et al.Aggregated residualtransformations for deep neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:1492-1500. [24]HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141. [25]ROSSLER A,COZZOLINO D,VERDOLIVA L,et al.Face-forensics++:Learning to detect manipulated facial images[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:1-11. [26]CHOLLET F.Xception:Deep Learning with Depthwise Separable Convolutions[C]//IEEE Conference on Computer Vision and Pattern Recognition.2017. |
[1] | 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺. 时序知识图谱表示学习 Temporal Knowledge Graph Representation Learning 计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204 |
[2] | 饶志双, 贾真, 张凡, 李天瑞. 基于Key-Value关联记忆网络的知识图谱问答方法 Key-Value Relational Memory Networks for Question Answering over Knowledge Graph 计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277 |
[3] | 汤凌韬, 王迪, 张鲁飞, 刘盛云. 基于安全多方计算和差分隐私的联邦学习方案 Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy 计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108 |
[4] | 王剑, 彭雨琦, 赵宇斐, 杨健. 基于深度学习的社交网络舆情信息抽取方法综述 Survey of Social Network Public Opinion Information Extraction Based on Deep Learning 计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099 |
[5] | 王馨彤, 王璇, 孙知信. 基于多尺度记忆残差网络的网络流量异常检测模型 Network Traffic Anomaly Detection Method Based on Multi-scale Memory Residual Network 计算机科学, 2022, 49(8): 314-322. https://doi.org/10.11896/jsjkx.220200011 |
[6] | 郝志荣, 陈龙, 黄嘉成. 面向文本分类的类别区分式通用对抗攻击方法 Class Discriminative Universal Adversarial Attack for Text Classification 计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077 |
[7] | 姜梦函, 李邵梅, 郑洪浩, 张建朋. 基于改进位置编码的谣言检测模型 Rumor Detection Model Based on Improved Position Embedding 计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046 |
[8] | 孙奇, 吉根林, 张杰. 基于非局部注意力生成对抗网络的视频异常事件检测方法 Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection 计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061 |
[9] | 张源, 康乐, 宫朝辉, 张志鸿. 基于Bi-LSTM的期货市场关联交易行为检测方法 Related Transaction Behavior Detection in Futures Market Based on Bi-LSTM 计算机科学, 2022, 49(7): 31-39. https://doi.org/10.11896/jsjkx.210400304 |
[10] | 胡艳羽, 赵龙, 董祥军. 一种用于癌症分类的两阶段深度特征选择提取算法 Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification 计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092 |
[11] | 曾志贤, 曹建军, 翁年凤, 蒋国权, 徐滨. 基于注意力机制的细粒度语义关联视频-文本跨模态实体分辨 Fine-grained Semantic Association Video-Text Cross-modal Entity Resolution Based on Attention Mechanism 计算机科学, 2022, 49(7): 106-112. https://doi.org/10.11896/jsjkx.210500224 |
[12] | 程成, 降爱莲. 基于多路径特征提取的实时语义分割方法 Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction 计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157 |
[13] | 侯钰涛, 阿布都克力木·阿布力孜, 哈里旦木·阿布都克里木. 中文预训练模型研究进展 Advances in Chinese Pre-training Models 计算机科学, 2022, 49(7): 148-163. https://doi.org/10.11896/jsjkx.211200018 |
[14] | 周慧, 施皓晨, 屠要峰, 黄圣君. 基于主动采样的深度鲁棒神经网络学习 Robust Deep Neural Network Learning Based on Active Sampling 计算机科学, 2022, 49(7): 164-169. https://doi.org/10.11896/jsjkx.210600044 |
[15] | 苏丹宁, 曹桂涛, 王燕楠, 王宏, 任赫. 小样本雷达辐射源识别的深度学习方法综述 Survey of Deep Learning for Radar Emitter Identification Based on Small Sample 计算机科学, 2022, 49(7): 226-235. https://doi.org/10.11896/jsjkx.210600138 |
|