计算机科学 ›› 2021, Vol. 48 ›› Issue (7): 77-85.doi: 10.11896/jsjkx.210300258

所属专题: 人工智能安全

• 人工智能安全* • 上一篇    下一篇

基于i_ResNet34模型和数据增强的深度伪造视频检测方法

暴雨轩, 芦天亮, 杜彦辉, 石达   

  1. 中国人民公安大学信息网络安全学院 北京100038
  • 收稿日期:2021-03-25 修回日期:2021-04-29 出版日期:2021-07-15 发布日期:2021-07-02
  • 通讯作者: 芦天亮(lutianliang@ppsuc.edu.cn)
  • 基金资助:
    国家重点研发计划(2017YFB0802804);中国人民公安大学2020年基本科研业务费重大项目(2020JKF101)

Deepfake Videos Detection Method Based on i_ResNet34 Model and Data Augmentation

BAO Yu-xuan, LU Tian-liang, DU Yan-hui, SHI Da   

  1. College of Information and Cyber Security,People’s Public Security University of China,Beijing 100038,China
  • Received:2021-03-25 Revised:2021-04-29 Online:2021-07-15 Published:2021-07-02
  • About author:BAO Yu-xuan,born in 1997,master.His main research interests include cyber security and artificial intelligence.(412851819@qq.com)
    LU Tian-liang,born in 1985,Ph.D,associate professor,is a member of China Computer Federation.His main research interests include cyber security and artificial intelligence.
  • Supported by:
    National Key R&D Program of China(2017YFB0802804) and 2020 Fundamental Research Funds for the Central Universities of PPSUC(2020JKF101).

摘要: 针对深度伪造视频检测存在的面部特征提取不充分的问题,提出了改进的ResNet(i_ResNet34)模型和3种基于信息删除的数据增强方式。首先,优化ResNet网络,使用分组卷积代替普通卷积,在不增加模型参数的前提下提取更丰富的人脸面部特征;接着改进模型虚线残差结构的shortcut分支,通过最大池化层完成下采样操作,减少视频帧中人脸面部特征信息的损失,然后在卷积层后引入通道注意力层,增加提取关键特征通道的权重,提升特征图的通道相关性。最后,利用i_ResNet34模型对原数据集及3种基于信息删除的数据增强方式扩充后的数据集进行训练,其在FaceForensics++的两类数据集Face-Swap和Deepfakes上的检测准确率分别达到了99.33%和98.67%,优于现有的主流算法,从而验证了所提方法的有效性。

关键词: 残差网络, 人工智能安全, 深度伪造, 深度学习, 数据增强, 特征提取

Abstract: Existing Deepfake videos detection methods are weak in extracting facial feature.Therefore,this paper proposes an improved ResNet(i_ResNet34) model and three data augmentation methods based on information dropping.Firstly,the ResNet is optimized by using the group convolution to replace the ordinary convolution to extract more sufficient facial features without increasing model parameters.Then,max pooling layer is used to the down sampling in the shortcut branch of the dashed residual structure of the model whichis improved,so that loss of facial feature information decreases in video frames.Then,the channel attention layer is introduced after the convolution layer to increase the weight of the channel which extracts the key features and improves the channel correlation of the feature map.Finally,the i_ResNet34 model is implemented to train the original dataset and the expanded dataset with three data augmentation methods based on information dropping,achieving 99.33% and 98.67% detection accuracy on FaceSwap and Deepfakes datasets of FaceForensicans++ respectively,superior to the existing mainstream algorithms,thus verifying the effectiveness of the proposed method.

Key words: Artificial intelligence security, Data augmentation, Deep learning, Deepfake, Feature extraction, Residual network

中图分类号: 

  • TP309
[1]BBC Bitesize.“Deepfakes:What are They and Why Would IMake One?” [OL].http://www.bbc.co.uk/bitesize/articles/zfkwcqt.
[2]BAO Y X,LU T L,DU Y H.Overview of Deepfake Video Detection Technology[J].Computer Science,2020,47(9):283-292.
[3]KOOPMAN M,RODRIGUEZ A M,GERADTS Z.Detection of Deepfake Video Manipulation[C]//The 20th Irish Machine Vision and Image Processing Conference (IMVIP).2018:133-136.
[4]LI J C,LIU B B,HU Y J,et al.Deepfake Video Detection Based on Consistency of Illumination Direction[J].Journal of Nanjing University of Aeronautics & Astronautics,2020,52(5):760-767.
[5]MATERN F,RIESS C,STAMMINGER M.Exploiting Visual Artifacts to Expose Deepfakes and Face Manipulations[C]//Proceedings of 2019 IEEE Winter A pplications of Computer Vision Workshops (WACVW).IEEE,2019:83-92.
[6]YANG X,LI Y,LYU S.Exposing Deepfakes Using Inconsistent Head Poses[C]//Proceedings of 2019 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP).IEEE,2019:8261-8265.
[7]DURALL R,KEUPER M,PFREUNDT F J,et al.Unmasking deepfakes with simple features[J].arXiv:1911.00686,2019.
[8]RAHMOUNI N,NOZICK V,YAMAGISHI J,et al.Distingui-shing computer graphics from natural images using convolution neural networks[C]//IEEE Workshop on Information Forensics and Security.2017:1-6.
[9]AFCHAR D,NOZICK V,YAMAGISHI J.et al.Mesonet:acompact facial video forgery detection network[C]//IEEE International Workshop on Information Forensics and Security (WIFS’18).2018:1-7.
[10]ZHOU P,HAN X,MORARIU V I,et al.Learning Rich Features for Image Manipulation Detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:1053-1061.
[11]NGUYEN H H,YAMAGISHI J,ECHIZEN I.Capsule-forensics:Using Capsule Networks to Detect Forged Images and Vi-deos[C]//Proceedings of 2019 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP).IEEE,2019:2307-2311.
[12]WU X,JIA S J.Face swapping detection based on multi-channel attention mechanism[J/OL].Computer Engineering:http://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=JSJC20210309002&v=g9BjGJf5ZLXy-78n4jlJAkrMIf9WfK22uyNI%25mmd2FoMZhYd%25mmd2B-ZyJoAIHxgsHFuBZk4eeGN.
[13]HU Y J,GAO Y F,LIU B B,et al.Deepfake Videos Detection Based on Image Segmentation withDeep Neural Networks[J].Journal of Electronics & Information Technology,2021,43(1):162-170.
[14]SABIR E,CHENG J,JAISWAL A,et al.Recurrent Convolutional Strategies for Face Manipulation Detection in videos[J].Interfaces (GUI),2019,3:1.
[15]LI Y,CHANG M C,LYU S.In Ictu Oculi:Exposing AI Created Fake Videos by Detecting Eye Blinking[C]//2018 IEEE International Workshop on Information Forensics and Security (WIFS).IEEE,2018:1-7.
[16]AMERINI I,GALTERI L,CALDELLI R,et al.Deepfake Video Detection through Optical Flow based CNN[C]//Proceedings of the IEEE International Conference on Computer Vision Workshops.2019:1205-1207.
[17]ZHENG B W,XIA H W,CHEN R D,et al.Exposing DeepFake Videos Based Convolutional LSTM Network[J/OL].Laser & Optoelectronics Progress.http://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=JGDJ2021031100H&v=2fqOuK4zqEKYz%25mmd2BwfP0UoP-60YtASzh6HtS%25mmd2B3KmaItdtD1HZNzgPIh1HjtsAoOg9bl.
[18]ZHANG Y X,LI G,CAO Y,et al.A Method for Detecting Human-face-tampered Videos based on Interframe Difference[J].Journal of Cyber Security,2020,5(2):49-72.
[19]DENG J,GUO J,ZHOU Y,et al.Retinaface:Single-stage dense face localisation in the wild[J].arXiv:1905.00641,2019.
[20]ZHONG Z,ZHENG L,KANG G,et al.Random erasing dataaugmentation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020,34(7):13001-13008.
[21]CHEN P,LIU S,ZHAO H,et al.Gridmask data augmentation[J].arXiv:2001.04086,2020.
[22]HE K M,ZHANG X Y,RENS Q,et al.Deep residual learningfor image recognition[C]//Proceedings of 2016 IEEE Confe-rence on Computer Vision and Pattern Recognition.Las Vegas,USA:IEEE,2016:770-778.
[23]XIE S,GIRSHICK R,DOLLÁR P,et al.Aggregated residualtransformations for deep neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:1492-1500.
[24]HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141.
[25]ROSSLER A,COZZOLINO D,VERDOLIVA L,et al.Face-forensics++:Learning to detect manipulated facial images[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:1-11.
[26]CHOLLET F.Xception:Deep Learning with Depthwise Separable Convolutions[C]//IEEE Conference on Computer Vision and Pattern Recognition.2017.
[1] 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺.
时序知识图谱表示学习
Temporal Knowledge Graph Representation Learning
计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204
[2] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[3] 汤凌韬, 王迪, 张鲁飞, 刘盛云.
基于安全多方计算和差分隐私的联邦学习方案
Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy
计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108
[4] 王剑, 彭雨琦, 赵宇斐, 杨健.
基于深度学习的社交网络舆情信息抽取方法综述
Survey of Social Network Public Opinion Information Extraction Based on Deep Learning
计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099
[5] 王馨彤, 王璇, 孙知信.
基于多尺度记忆残差网络的网络流量异常检测模型
Network Traffic Anomaly Detection Method Based on Multi-scale Memory Residual Network
计算机科学, 2022, 49(8): 314-322. https://doi.org/10.11896/jsjkx.220200011
[6] 郝志荣, 陈龙, 黄嘉成.
面向文本分类的类别区分式通用对抗攻击方法
Class Discriminative Universal Adversarial Attack for Text Classification
计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077
[7] 姜梦函, 李邵梅, 郑洪浩, 张建朋.
基于改进位置编码的谣言检测模型
Rumor Detection Model Based on Improved Position Embedding
计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046
[8] 孙奇, 吉根林, 张杰.
基于非局部注意力生成对抗网络的视频异常事件检测方法
Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection
计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061
[9] 张源, 康乐, 宫朝辉, 张志鸿.
基于Bi-LSTM的期货市场关联交易行为检测方法
Related Transaction Behavior Detection in Futures Market Based on Bi-LSTM
计算机科学, 2022, 49(7): 31-39. https://doi.org/10.11896/jsjkx.210400304
[10] 胡艳羽, 赵龙, 董祥军.
一种用于癌症分类的两阶段深度特征选择提取算法
Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification
计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092
[11] 曾志贤, 曹建军, 翁年凤, 蒋国权, 徐滨.
基于注意力机制的细粒度语义关联视频-文本跨模态实体分辨
Fine-grained Semantic Association Video-Text Cross-modal Entity Resolution Based on Attention Mechanism
计算机科学, 2022, 49(7): 106-112. https://doi.org/10.11896/jsjkx.210500224
[12] 程成, 降爱莲.
基于多路径特征提取的实时语义分割方法
Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction
计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157
[13] 侯钰涛, 阿布都克力木·阿布力孜, 哈里旦木·阿布都克里木.
中文预训练模型研究进展
Advances in Chinese Pre-training Models
计算机科学, 2022, 49(7): 148-163. https://doi.org/10.11896/jsjkx.211200018
[14] 周慧, 施皓晨, 屠要峰, 黄圣君.
基于主动采样的深度鲁棒神经网络学习
Robust Deep Neural Network Learning Based on Active Sampling
计算机科学, 2022, 49(7): 164-169. https://doi.org/10.11896/jsjkx.210600044
[15] 苏丹宁, 曹桂涛, 王燕楠, 王宏, 任赫.
小样本雷达辐射源识别的深度学习方法综述
Survey of Deep Learning for Radar Emitter Identification Based on Small Sample
计算机科学, 2022, 49(7): 226-235. https://doi.org/10.11896/jsjkx.210600138
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!