计算机科学 ›› 2021, Vol. 48 ›› Issue (7): 238-244.doi: 10.11896/jsjkx.200600043

• 计算机图形学&多媒体 • 上一篇    下一篇

基于多尺度多粒度特征的行人重识别

王栋1, 周大可1,2, 黄有达1, 杨欣1   

  1. 1 南京航空航天大学自动化学院 南京211100
    2 江苏省物联网与控制技术重点实验室(南京航空航天大学) 南京211100
  • 收稿日期:2020-06-05 修回日期:2020-09-18 出版日期:2021-07-15 发布日期:2021-07-02
  • 通讯作者: 周大可(dkzhou@nuaa.edu.cn)
  • 基金资助:
    国家自然科学基金(61573182)

Multi-scale Multi-granularity Feature for Pedestrian Re-identification

WANG Dong1, ZHOU Da-ke1,2, HUANG You-da1 , YANG Xin1   

  1. 1 School of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 211100,China
    2 Jiangsu Key Laboratory of Internet of Things and Control Technologies (Nanjing University of Aeronautics and Astronautics),Nanjing 211100,China
  • Received:2020-06-05 Revised:2020-09-18 Online:2021-07-15 Published:2021-07-02
  • About author:WANG Dong,born in 1996,postgra-duate.His main research interests include target detection,pedestrian re-identification and target tracking.(m15150690108@163.com)
    ZHOU Da-ke,born in 1974,Ph.D,associate professor.His main research in-terests include digital image processing,computer vision and machine learning.
  • Supported by:
    National Natural Science Foundation of China(61573182).

摘要: 针对现有的基于卷积神经网络的行人重识别方法所提取的特征辨识力不足的问题,提出了一种基于多尺度多粒度特征的行人重识别方法。在训练阶段,该方法在卷积神经网络的不同尺度提取特征;然后对获得的多尺度特征图进行分块和池化,从而得到不同尺度的全局特征和局部特征的多粒度特征,使用不确定性权重调节Softmax损失和三元组损失来对特征向量进行监督训练。在推理阶段,对所获得的多尺度多粒度的特征进行融合,使用融合特征在图像库中进行相似度匹配。在Market-1501和DukeMTMC-ReID数据集上的实验表明,所提方法相比基准网络ResNet-50在Rank-1评价指标上分别提升了4.3%和3.6%,在mAP评价指标上分别提升了6.2%和6.6%。实验结果表明,所提方法能够增强提取特征的辨识力,提高行人重识别的性能。

关键词: 多尺度特征, 多粒度特征, 机器视觉, 卷积神经网络, 行人重识别

Abstract: In order to address the problem of insufficient discriminative features for pedestrian re-identification extracted by exis-ting convolutional neural network,a novel multi-scale multi-granularity feature learning for pedestrian re-identification method is proposed.In the training phase,the method extracts multi-scale features at different stages of the convolutional neural network,and then blocks and pools these feature maps to obtain multi-granularity features containing global and local features,uses uncertainty to weight Softmax loss and triples loss and to supervise training process on feature vectors.In the inference phase,the obtained multi-scale multi-granularity features are concatenated,and finally the concatenated features are used to perform similarity matching in the gallery.Experiments on the Market-1501 and DukeMTMC-ReID datasets show that the proposed method improves the Rank-1 evaluation index by 4.3% and 3.6%,respectively,compared with the benchmark network ResNet-50,and improves the mAP evaluation index respectively 6.2% and 6.6%.The results show that the proposed method can enhance the discrimination of extracted features and improve the performance of pedestrian re-identification.

Key words: Convolutional neural network, Machine vision, Multi-granularity features, Multi-scale features, Pedestrian re-identification

中图分类号: 

  • TP399
[1]LUO H,JIANG W,FAN X,et al.A Survey on Deep Learning Based Person Re-identification[J].Acta Automatica Sinic,2019,45(11):2032-2049.
[2]MARTIN K,HIRZER M,WOHLHART P,et al.Large ScaleMetric Learning from Equivalence Constraints[C]//IEEE Conference on Computer Vision and Pattern Recognition.Providence:IEEE Press,2012:2288-2295.
[3]LIAO S,HU Y,ZHU X,et al.Person re-identification by local maximal occurrence representation and metric learning[C]//IEEE Conference on Computer Vision and Pattern Recognition.Boston:IEEE Press,2015:2197-2206.
[4]HUAN X Y,XU J L,GUO G,et al.Real-time pedestrian re-reco-gnition based on enhanced aggregate channel features[J].Progress in Laser and Optoelectronics,2017(9):119-127.
[5]ZHENG L,YANG Y,HAUPTMANN A G.Person re-identification:Past,present and future [J].arXiv:1610.02984.
[6]HERMANS A,BEYER L,LEIBE B.In Defense of the Triplet Loss for Person Re-Identification[J].arXiv:1703.07737.
[7]ZHANG G N,WANG J B,ZHANG Y F,et al.Pedestrian recognition method based on feature fusion[J].Computer Engineering and Applications,2017(12):190-194,245.
[8]WEI L,ZHANG S,YAO H,et al.GLAD:Global-Local-Alignment Descriptor for Pedestrian Retrieval[C]//Proceedings of the 25th ACM international conference on Multimedia.New York:ACM Press,2017:420-428.
[9]SU C,LI J,ZHANG S,et al.Pose-driven Deep Convolutional Model for Person Re-identification[C]//IEEE Conference on Computer Vision and Pattern Recognition.Hawaii:IEEE Press,2017:3980-3989.
[10]ZHAO H,TIAN M,SUN S,et al.Spindle Net:Person Re-identification with Human Body Region Guided Feature Decomposition and Fusion[C]//IEEE Conference on Computer Vision and Pattern Recognition.Hawaii:IEEE Press,2017:1077-1085.
[11]SUN Y,ZHENG L,YANG Y,et al.Beyond Part Models:Person Retrieval with Refined Part Pooling (and a Strong Convolutional Baseline)[C]//European Conference on Computer Vision.Munich:IEEE Press,2018:480-496.
[12]LIU Z Y,WAN P P.Feature extraction method for pedestrian re-recognition based on attention mechanism[J].Journal of Computer Applications,2020,40(3):672-676.
[13]LI W,ZHU X,GONG S.Harmonious Attention Network for Person Re-Identification[C]//IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE Press,2018:2285-2294.
[14]SI J,ZHANG H,LI C G,et al.Dual Attention Matching Network for Context-Aware Feature Sequence based Person Re-Identification[C]//IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE Press,2018:5363-5372.
[15]ZHONG Z,ZHENG L,ZHENG Z D,et al.CamStyle:A Novel Data Augmentation Method for Person Re-Identification[J].IEEE Transactions on Image Processing,2019,28(3):1176-1190.
[16]ZHANG S L,CAO X.Improved Person Re-Identification Algorithm on Camstyle [J].CEA,2020,56(15):124-131.
[17]ZHONG Z,ZHENG L,KANG G,et al.Random erasing dataaugmentation [J].arXiv:1708.04896.
[18]ZHONG Z,ZHENG L,CAO D,et al.Re-ranking Person Re-identification with k-reciprocal Encoding[C]//IEEE Conference on Computer Vision and Pattern Recognition.Hawaii:IEEE Press,2017:3652-3661.
[19]HE K,ZHANG X,REN S,et al.Deep Residual Learning forImage Recognition [C]//IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE Press,2016:770-778.
[20]LIN T Y,DOLLAR P,GIRSHICK R,et al.Feature pyramidnetworks for object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition.Honolulu:IEEE Press,2017:2117-2125.
[21]CHRISTIAN S,VINCENT V,SERGER I,et al.Rethinking the inception architecture for computer vision[C]//IEEEConfe-rence on Computer Vision and Pattern Recognition.Las Vegas:IEEE Press,2016:2818-2826.
[22]CIPOLLA R,GAL Y,KENDALL A.Multi-task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE Press,2018:7482-7491.
[23]ZHENG L,SHEN L Y,TIAN L,et al.Scalable Person Re-identification:A Benchmark[C]//The IEEE InternationalConfe-rence on Computer Vision.Santiago:IEEE Press,2015:1116-1124.
[24]ZHANG X,LUO H,FAN X,et al.Alignedreid:Surpassing human-level performance in person reidentification[J].arXiv:1711.08184.
[25]TAY C,ROY S,YAP K.AANet:Attribute Attention Network for Person Re-Identifications[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach:IEEE Press,2019:7127-7136.
[26]HOU R B,MA B P,CHANG H,et al.Interaction-and-Aggregation Network for Person Re-identification [C]//The IEEE Conference on Computer Vision and Pattern Recognition.Long Beach:IEEE Press,2019:9317-9326.
[27]LUO H,JIANG W,GU Y,et al.Bag of Tricks and A Strong Baseline for Deep Person Re-identification [C]//The IEEE Conference on Computer Vision and Pattern Recognition Workshops.Long Beach:IEEE Press,2019:4321-4329.
[28]ZHOU K,YANG Y,CAVALLARO A.et al.Omni-Scale Feature Learning for Person Re-Identification[C]//2019 IEEE/CVF International Conference on Computer Vision.Seoul:IEEE Press,2019:3701-3711.
[1] 周乐员, 张剑华, 袁甜甜, 陈胜勇.
多层注意力机制融合的序列到序列中国连续手语识别和翻译
Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion
计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026
[2] 李宗民, 张玉鹏, 刘玉杰, 李华.
基于可变形图卷积的点云表征学习
Deformable Graph Convolutional Networks Based Point Cloud Representation Learning
计算机科学, 2022, 49(8): 273-278. https://doi.org/10.11896/jsjkx.210900023
[3] 陈泳全, 姜瑛.
基于卷积神经网络的APP用户行为分析方法
Analysis Method of APP User Behavior Based on Convolutional Neural Network
计算机科学, 2022, 49(8): 78-85. https://doi.org/10.11896/jsjkx.210700121
[4] 朱承璋, 黄嘉儿, 肖亚龙, 王晗, 邹北骥.
基于注意力机制的医学影像深度哈希检索算法
Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism
计算机科学, 2022, 49(8): 113-119. https://doi.org/10.11896/jsjkx.210700153
[5] 檀莹莹, 王俊丽, 张超波.
基于图卷积神经网络的文本分类方法研究综述
Review of Text Classification Methods Based on Graph Convolutional Network
计算机科学, 2022, 49(8): 205-216. https://doi.org/10.11896/jsjkx.210800064
[6] 金方焱, 王秀利.
融合RACNN和BiLSTM的金融领域事件隐式因果关系抽取
Implicit Causality Extraction of Financial Events Integrating RACNN and BiLSTM
计算机科学, 2022, 49(7): 179-186. https://doi.org/10.11896/jsjkx.210500190
[7] 张源, 康乐, 宫朝辉, 张志鸿.
基于Bi-LSTM的期货市场关联交易行为检测方法
Related Transaction Behavior Detection in Futures Market Based on Bi-LSTM
计算机科学, 2022, 49(7): 31-39. https://doi.org/10.11896/jsjkx.210400304
[8] 张颖涛, 张杰, 张睿, 张文强.
全局信息引导的真实图像风格迁移
Photorealistic Style Transfer Guided by Global Information
计算机科学, 2022, 49(7): 100-105. https://doi.org/10.11896/jsjkx.210600036
[9] 戴朝霞, 李锦欣, 张向东, 徐旭, 梅林, 张亮.
基于DNGAN的磁共振图像超分辨率重建算法
Super-resolution Reconstruction of MRI Based on DNGAN
计算机科学, 2022, 49(7): 113-119. https://doi.org/10.11896/jsjkx.210600105
[10] 刘月红, 牛少华, 神显豪.
基于卷积神经网络的虚拟现实视频帧内预测编码
Virtual Reality Video Intraframe Prediction Coding Based on Convolutional Neural Network
计算机科学, 2022, 49(7): 127-131. https://doi.org/10.11896/jsjkx.211100179
[11] 徐鸣珂, 张帆.
Head Fusion:一种提高语音情绪识别的准确性和鲁棒性的方法
Head Fusion:A Method to Improve Accuracy and Robustness of Speech Emotion Recognition
计算机科学, 2022, 49(7): 132-141. https://doi.org/10.11896/jsjkx.210100085
[12] 孟月波, 穆思蓉, 刘光辉, 徐胜军, 韩九强.
基于向量注意力机制GoogLeNet-GMP的行人重识别方法
Person Re-identification Method Based on GoogLeNet-GMP Based on Vector Attention Mechanism
计算机科学, 2022, 49(7): 142-147. https://doi.org/10.11896/jsjkx.210600198
[13] 孙福权, 崔志清, 邹彭, 张琨.
基于多尺度特征的脑肿瘤分割算法
Brain Tumor Segmentation Algorithm Based on Multi-scale Features
计算机科学, 2022, 49(6A): 12-16. https://doi.org/10.11896/jsjkx.210700217
[14] 吴子斌, 闫巧.
基于动量的映射式梯度下降算法
Projected Gradient Descent Algorithm with Momentum
计算机科学, 2022, 49(6A): 178-183. https://doi.org/10.11896/jsjkx.210500039
[15] 杨涵, 万游, 蔡洁萱, 方铭宇, 吴卓超, 金扬, 钱伟行.
基于步态分类辅助的虚拟IMU的行人导航方法
Pedestrian Navigation Method Based on Virtual Inertial Measurement Unit Assisted by GaitClassification
计算机科学, 2022, 49(6A): 759-763. https://doi.org/10.11896/jsjkx.211200148
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!