计算机科学 ›› 2021, Vol. 48 ›› Issue (9): 86-94.doi: 10.11896/jsjkx.200900040

所属专题: 智能数据治理技术与系统

• 智能数据治理技术与系统* 上一篇    下一篇

基于历史行车轨迹集的车辆行为可视分析方法

罗月童, 汪涛, 杨梦男, 张延孔   

  1. 合肥工业大学计算机与信息学院 合肥230601
  • 收稿日期:2020-09-04 修回日期:2020-11-27 出版日期:2021-09-15 发布日期:2021-09-10
  • 通讯作者: 张延孔(zhangyankong@hfut.edu.cn)
  • 作者简介:ytluo@hfut.edu.cn
  • 基金资助:
    国家自然科学基金(61602146);国家重点研发计划(2017YFB1402200);安徽省科技攻关计划(1604d0802009)

Historical Driving Track Set Based Visual Vehicle Behavior Analytic Method

LUO Yue-tong, WANG Tao, YANG Meng-nan, ZHANG Yan-kong   

  1. School of Computer Science and Information Engineering,Hefei University of Technology,Hefei 230601,China
  • Received:2020-09-04 Revised:2020-11-27 Online:2021-09-15 Published:2021-09-10
  • About author:LUO Yue-tong,born in 1990,Ph.D,professor.His main research interests include digital image processing and scientific visualization.
    ZHANG Yan-kong,born in 1978,Ph.D.His main research interests include data mining and visual analytics.
  • Supported by:
    National Natural Science Foundation of China(61602146),National Basic Research Program of China(2017YFB1402200) and Key Science and Technology Program of Anhui Province,China(1604d0802009)

摘要: 随着智慧城市的不断发展,基于交通卡口自动获取车辆行车轨迹,为基于轨迹的车辆行为分析奠定了基础。但是,因为卡口的位置固定,车辆轨迹表示为卡口序列,所以文中首先将卡口和轨迹分别映射为单词和句子,应用语句的语义相似性方法计算轨迹相似性;然后在轨迹相似性的基础上提出轨迹熵,用轨迹熵度量某个车辆所有轨迹的规律性;最后基于轨迹熵分析车辆的行为特征,如轨迹熵低的车辆意味着行车特别有规律,很可能是通勤车。为便于用户进行深入分析,文中进一步提供了包含多联动视图的可视分析系统,允许用户观察和比较车辆轨迹和轨迹熵,结合聚类分析和相关交互,帮助用户发现有意义的车辆行为,如上下班的通勤车的轨迹熵较低、游街模式的出租车轨迹熵很高。对昆明市2019年2月份的卡口数据集进行了分析,结果表明所提方法能有效发现不同轨迹熵区间内的车辆出行行为及其特点,证明了所提方法的有效性。

关键词: 轨迹熵, 聚类, 可视分析, 行车轨迹, 语义相似性

Abstract: With the continuous development of smart city,vehicle track can be acquired automatically based on traffic bayonet,which lays a foundation for vehicle behavior analysis based on track.However,since the bayonet position is fixed,the vehicle tra-jectory is expressed as bayonet sequence.Therefore,the bayonet and trajectory are first mapped into words and sentences respectively,and the semantic similarity method is used to calculate the trajectory similarity.Then,based on the similarity of tracks,track entropy is proposed to measure the regularity of all tracks of a vehicle.Finally,the trajectory entropy is used to analyze the behavioral characteristics of vehicles.For example,vehicles with low trajectory entropy mean that the driving is particularly regular,which is likely to be commuter vehicles.To facilitate users in-depth analysis,this paper further provides a visual analysis system with more linkage view,which allows the user to compare the vehicle trajectory entropy,and combines clustering analysis and related interaction,to help users find meaningful vehicle behavior,such as commuting a commuter has a low trajectory entropy,following the model of taxi path entropy is very high.By analyzing the bayonet data set of Kunming city in February 2019,the vehicle travel behavior and its characteristics in different trajectory entropy intervals can be found effectively,which proves the effectiveness of the proposed method.

Key words: Clustering, Deriving track, Semantic similarity, Trajectory of entropy, Visual analysis

中图分类号: 

  • TP391.41
[1]FU Z,HU W,TAN T.Similarity based vehicle trajectory clustering and anomaly detection[C]//IEEE International Conference on Image Processing 2005.IEEE,2005,2:II-602.
[2]LI Z,HAN J,DING B,et al.Mining periodic behaviors of object movements for animal and biological sustainability studies[J].Data Mining and Knowledge Discovery,2012,24(2):355-386.
[3]KIM J,MAHMASSANI H S.Spatial and temporal characterization of travel patterns in a traffic network using vehicle trajectories[J].Transportation Research Procedia,2015,9:164-184.
[4]HUNG C C,PENG W C,LEE W C.Clustering and aggregating clues of trajectories for mining trajectory patterns and routes[J].The VLDB Journal,2015,24(2):169-192.
[5]DOU D.Visual analysis of user behavior based on “Didi” order trajectory data[D].Xi'an:Xidian University,2019.
[6]NIU D D.Research on taxi GPS Trajectory Data Visualization[D].Xi'an:Chang'an University,2018.
[7]VON LANDESBERGER T,BRODKORB F,ROSKOSCH P,et al.MobilityGraphs:Visual analysis of mass mobility dynamics via spatio-temporal graphs and clustering[J].IEEE Transactions on Visualization and Computer Graphics,2015,22(1):11-20.
[8]REN S L.Visual analysis and system development of sparsetraffic trajectory data[D].Hangzhou:Zhejiang University,2017.
[9]LI M X.Research on Detection Technology of Car Set based on Trajectory Data[D].Shanghai:East China Normal University,2019.
[10]CHEN Z,GUO J,LIU Q.DBSCAN Algorithm Clustering forMassive AIS Data Based on the Hadoop Platform[C]//2017 International Conference on Industrial Informatics-Computing Technology,Intelligent Technology,Industrial Information Integration (ICIICII).Wuhan,2017:25-28.
[11]SONG L.Research and Implementation of visual analysis System for Taxi Trajectory Anomaly Detection[D].Beijing:Beijing University of Posts and Telecommunications,2019.
[12]WANG S C.Visual scheme Design for spatial and temporal bicycle trajectory data analysis[D].Xi'an:Chang'an University,2017.
[13]FENG T.Visual analysis of residents travel patterns based on taxi OD stream data[D].Wuhan:Wuhan University,2017.
[14]XU J Y.Spatio-temporal visual analysis of indirect sparse sampling data[D].Taiyuan:Taiyuan University of Technology,2019.
[15]SUN Y Y,SUN L M,ZHU H S,et al.Abnormal behavior detection based on vehicle track of license plate recognition system[J].Computer Research and Development,2015,52(8):1921.
[16]ZHU Y K.Research on Vehicle Trajectory Prediction and Compensation Method for Missing Information based on Bayonet data[D].Chongqing:Chongqing University of Posts and Telecommunications,2019.
[17]WANG B P,JIANG T H,ZHOU X,et al.Tracking data of quasi-automatic license plate recognition with accompanying vehicle group mining[J].Computer Applications,2017,37(11):3064-3068.
[18]ZHAO L,SHI G,YANG J.An adaptive hierarchical clustering method for ship trajectory data based on DBSCAN algorithm[C]//2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA).Beijing,2017:329-336.
[19]MIKOLOV T,SUTSKEVER I,CHEN K,et al.DistributedRepresentations of Words and Phrases and their Compositiona-lity[C]//Proceedings of Advances in Neural Information Pro-cessing Systems.2013:3111-3119.
[20]GUO D,JIN H,GAO P,et al.Detecting spatial communitystructure in movements[J].International Journal of Geographi-cal Information Science,2018,32(7):1326-1347.
[21]DING T C.Research on urban Road Correlation Analysis Me-thod based on taxi trajectory data[D].Hefei:Hefei University of Technology,2018.
[22]ESTER M,KRIEGEL H P,SANDER J,et al.A Density-Based Algorithm for Discovering Clusters in Large Spatial Datasets with Noise[C]//Proceedings of the Second International Conference on Knowledge Discovery and Data Mining.1996:226-231.
[23]ANKERST M,BREUNIG M M,KRIEGEL H P,et al.OP-TICS:Ordering Points to Identify the Clustering Structure[J].ACM Sigmod Record,1999,28(2):49-60.
[24]SCHUBERT E,SANDER J,ESTER M,et al.DBSCAN revisited,revisited:why and how you should (still) use DBSCAN[J].ACM Transactions on Database Systems (TODS),2017,42(3):1-21.
[25]ZHOU Z,MENG L,TANG C,et al.Visual Abstraction of Large Scale Geospatial Origin-Destination Movement Data[C]//IEEE Transactions on Visualization and Computer Graphics.2018:43-53.
[26]COVER T M.Elements of information theory[M].John Wiley &Sons,1999.
[27]MARTIN N F G,ENGLAND J W.Mathematical theory of entropy[M].Cambridge University Press,2011.
[28]MIKOLOV T,SUTSKEVER I,CHEN K,et al.DistributedRepresentations of Words and Phrases and their Compositiona-lity[C]//Proceedings of Advances in Neural Information Processing Systems.2013:3111-3119.
[29]JIE S,XIN F,WEN S.Active Learning for Semi-supervisedClassification Based on Information Entropy[C]//2009 International Forum on Information Technology and Applications.Chengdu,2009:591-595.
[30]ESTER M,KRIEGEL H P,SANDER J,et al.A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[C]//Proceedings of the 2nd ACM SIGKDD.Portland,USA:AAAI,1996:226-331.
[1] 柴慧敏, 张勇, 方敏.
基于特征相似度聚类的空中目标分群方法
Aerial Target Grouping Method Based on Feature Similarity Clustering
计算机科学, 2022, 49(9): 70-75. https://doi.org/10.11896/jsjkx.210800203
[2] 鲁晨阳, 邓苏, 马武彬, 吴亚辉, 周浩浩.
基于分层抽样优化的面向异构客户端的联邦学习
Federated Learning Based on Stratified Sampling Optimization for Heterogeneous Clients
计算机科学, 2022, 49(9): 183-193. https://doi.org/10.11896/jsjkx.220500263
[3] 鲁晨阳, 邓苏, 马武彬, 吴亚辉, 周浩浩.
基于DBSCAN聚类的集群联邦学习方法
Clustered Federated Learning Methods Based on DBSCAN Clustering
计算机科学, 2022, 49(6A): 232-237. https://doi.org/10.11896/jsjkx.211100059
[4] 郁舒昊, 周辉, 叶春杨, 王太正.
SDFA:基于多特征融合的船舶轨迹聚类方法研究
SDFA:Study on Ship Trajectory Clustering Method Based on Multi-feature Fusion
计算机科学, 2022, 49(6A): 256-260. https://doi.org/10.11896/jsjkx.211100253
[5] 毛森林, 夏镇, 耿新宇, 陈剑辉, 蒋宏霞.
基于密度敏感距离和模糊划分的改进FCM算法
FCM Algorithm Based on Density Sensitive Distance and Fuzzy Partition
计算机科学, 2022, 49(6A): 285-290. https://doi.org/10.11896/jsjkx.210700042
[6] 陈景年.
一种适于多分类问题的支持向量机加速方法
Acceleration of SVM for Multi-class Classification
计算机科学, 2022, 49(6A): 297-300. https://doi.org/10.11896/jsjkx.210400149
[7] 刘丽, 李仁发.
医疗CPS协作网络控制策略优化
Control Strategy Optimization of Medical CPS Cooperative Network
计算机科学, 2022, 49(6A): 39-43. https://doi.org/10.11896/jsjkx.210300230
[8] 陈佳舟, 赵熠波, 徐阳辉, 马骥, 金灵枫, 秦绪佳.
三维城市场景中的小物体检测
Small Object Detection in 3D Urban Scenes
计算机科学, 2022, 49(6): 238-244. https://doi.org/10.11896/jsjkx.210400174
[9] 邢云冰, 龙广玉, 胡春雨, 忽丽莎.
基于SVM的类别增量人体活动识别方法
Human Activity Recognition Method Based on Class Increment SVM
计算机科学, 2022, 49(5): 78-83. https://doi.org/10.11896/jsjkx.210400024
[10] 朱哲清, 耿海军, 钱宇华.
面向化学结构的线段聚类算法
Line-Segment Clustering Algorithm for Chemical Structure
计算机科学, 2022, 49(5): 113-119. https://doi.org/10.11896/jsjkx.210700131
[11] 张宇姣, 黄锐, 张福泉, 隋栋, 张虎.
基于菌群优化的近邻传播聚类算法研究
Study on Affinity Propagation Clustering Algorithm Based on Bacterial Flora Optimization
计算机科学, 2022, 49(5): 165-169. https://doi.org/10.11896/jsjkx.210800218
[12] 左园林, 龚月姣, 陈伟能.
成本受限条件下的社交网络影响最大化方法
Budget-aware Influence Maximization in Social Networks
计算机科学, 2022, 49(4): 100-109. https://doi.org/10.11896/jsjkx.210300228
[13] 杨旭华, 王磊, 叶蕾, 张端, 周艳波, 龙海霞.
基于节点相似性和网络嵌入的复杂网络社区发现算法
Complex Network Community Detection Algorithm Based on Node Similarity and Network Embedding
计算机科学, 2022, 49(3): 121-128. https://doi.org/10.11896/jsjkx.210200009
[14] 韩洁, 陈俊芬, 李艳, 湛泽聪.
基于自注意力的自监督深度聚类算法
Self-supervised Deep Clustering Algorithm Based on Self-attention
计算机科学, 2022, 49(3): 134-143. https://doi.org/10.11896/jsjkx.210100001
[15] 蒲实, 赵卫东.
一种面向动态科研网络的社区检测算法
Community Detection Algorithm for Dynamic Academic Network
计算机科学, 2022, 49(1): 89-94. https://doi.org/10.11896/jsjkx.210100023
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!