计算机科学 ›› 2022, Vol. 49 ›› Issue (6A): 256-260.doi: 10.11896/jsjkx.211100253

• 大数据&数据科学 • 上一篇    下一篇

SDFA:基于多特征融合的船舶轨迹聚类方法研究

郁舒昊, 周辉, 叶春杨, 王太正   

  1. 海南大学计算机科学与技术学院 海口 570228
  • 出版日期:2022-06-10 发布日期:2022-06-08
  • 通讯作者: 周辉(zhouhui@hainanu.edu.cn)
  • 作者简介:(kaykalkaz@163.com)
  • 基金资助:
    国家自然科学基金 (61962017);海南省重点研究开发项目(ZDYF2020018);国家重点研究开发项目(2018YFB2100805)

SDFA:Study on Ship Trajectory Clustering Method Based on Multi-feature Fusion

YU Shu-hao, ZHOU Hui, YE Chun-yang, WANG Tai-zheng   

  1. School of Computer Science and Technology,Hainan University,Haikou 570228,China
  • Online:2022-06-10 Published:2022-06-08
  • About author:YU Shu-hao,born in 1996,postgra-duate.His main research interests include artificial intelligence and data mining.
    ZHOU Hui,born in 1980,professor,Ph.D supervisor,is a member of China Computer Federation.His main research interests include artificial intelligence and sensor networks.
  • Supported by:
    National Science Foundation of China(61962017),Hainan Provincial Key Research and Development Program(ZDYF2020018) and National Key Research and Development Program(2018YFB2100805).

摘要: 随着航运业的快速发展,船舶轨迹挖掘与分析技术变得愈发重要,轨迹聚类在船舶领域有很多实际应用,如异常检测、位置预测、船舶避碰等。传统的轨迹相似度计算方法在精确度和效率上都较为低下,而现有的基于深度学习的方法大多数只提取静态特征,忽视了静态与动态的多特征的综合提取。为了解决这一问题,提出了一种基于卷积自编码器的静态-动态特征融合模型,用于提取更完善的船舶轨迹特征,弥补了多特征融合技术在船舶轨迹聚类应用方面的不足。在真实数据集上的实验结果表明,相比LCSS,DTW等传统方法以及基于深度学习的多特征提取模型,所提模型在精确率、准确率等指标上均至少有5%~10%的提升。

关键词: 船舶自动识别系统(AIS), 多特征融合, 轨迹聚类, 卷积自编码器(CAE)

Abstract: With the rapid development of ocean transportation,the technology of vessel trajectory mining and analysis has become more and more important.Trajectory clustering has many practical applications in the ship field,such as anomaly detection,position prediction,ship collision avoidance and so on.Traditional trajectory similarity calculation methods are relatively low in accuracy and efficiency,and most existing deep learning methods only extract features of static ones,ignoring the multi-feature combination of dynamic and static features.In order to solve the problem,a static-dynamic-feature fusion model based on convolutional auto-encoder is proposed,which can extract more perfect trajectory features.It makes up for the deficiency of multi-feature fusion technique in vessel trajectory clustering.Experiments on real datasets have demonstrated that compared with traditional methods such as LCSS,DTW and multi-feature extraction model based on deep learning,the proposed model has at least 5%~10% improvement in metrics such as precision,accuracy and so on.

Key words: Convolutional auto-encoder (CAE), Multi-feature fusion, Ship automatic identification system (AIS), Trajectory clustering

中图分类号: 

  • TP391
[1] TU E,ZHANG G,RACHMAWATI L,et al.Exploiting AIS data for intelligent maritime navigation:a comprehensive survey from data to methodology[J].IEEE Transactions on Intelligent Transportation Systems,2017,19(5):1559-1582.
[2] ZHOU P P,DING Q H,LUO H B,et al.Anomaly trajectory detectionbased on DBSCAN clustering algorithm[J].Infrared and Laser Engineering,2017,46(5):238-245.
[3] YANG H,BAI Y Q,LIU L,et al.Research on air transportChannels in the process of air pollution in Henan area based on trajectory clustering[J].Journal of Meteorology and Environment,2017,33(4):29-39.
[4] ZHAO Y D,WANG C,LI S M,et al.Reliable clustering method of flight trajectory in terminal area based on resampling[J].Journal of Southwest Jiaotong University,2017,52(4):817-825,834.
[5] YANG S L,BI S B,NKUNZIMANA A,et al.A spatial clustering method of taxi passenger trajectory[J].Computer Engineering and Applications,2018,54(14):249-255.
[6] WANG W G,CHU X M,JIANG Z L,et al.Classification of ship trajectories by using naive bayesian algorithm[C]//Proceedings of the 5th International Conference on Transportation Information and Safety.2019:466-470.
[7] SU H,LIU S C,ZHENG B L,et al.A survey of trajectory distance measures and performance evaluation[J].The Very Large Data Base Journal,2020,29(1):3-32.
[8] RUBINSTEIN A,SONG Z.Reducing approximate longest common subsequence to approximate edit distance[C]//Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms,Society for Industrial and Applied Mathematics.2020:1591-1600.
[9] LI H H,LIU J X,YANG Z L,et al.Adaptively constrained dynamic time warping for time series classification and clustering[J].Information Sciences,2020,534:97-116.
[10] KARIMI D,SALCUDEAN S E.Reducing the hausdorff distance in medical image segmentation with convolutional neural networks[J].IEEE Transactions on Medical Imaging,2019,39(2):499-513.
[11] BUCHIN K,DIEZ Y,VAN DIGGELEN T,et al.Efficient tra-jectory queries under the Fréchet distance (GIS Cup)[C]//Proceedings of the 25th ACM SIGSPATIAL International Confe-rence on Advances in Geographic Information Systems.2017:1-4.
[12] YAO D,ZHANG C,ZHU Z H,et al.Trajectory clustering via deep representation learning [C]//Proceedings of 2017 International Joint Conference on Neural Networks.2017:3880-3887.
[13] SUTSKEVER I,VINYALS O,LE Q V.Sequence to sequence learning with neural networks [C]//Proceedings of Conference and Workshop on Neural Information Processing Systems.2014:3104-3112.
[14] DABIRI S,LU C T,HEASLIP K,et al.Semi-supervised deep learning approach for transportation mode identification using GPS trajectory data[J].IEEE Transactions on Knowledge and Data Engineering,2019,32(5):1010-1023.
[15] PAN Y C,WU D S,OLSON D L.Online to offline (O2O) ser-vice recommendation method based on multi-dimensional simila-rity measurement[J].Decision Support Systems,2017,103:1-8.
[16] MAO Y C,ZHONG H S,XIAO X J,et al.A segment-based trajectory similarity measure in the urban transportation systems[J].Sensors,2017,17(3):524.
[17] SHANG S,CHEN L C,WEI Z,et al.Parallel trajectory simila-rity joins in spatial networks[J].The Very Large Data Base Journal,2018,27(3):395-420.
[18] PESARA A C,PATIL V,ATREY P K.Secure computing of gps trajectory similarity:a review [C]//Proceedings of the 2nd ACM SIGSPATIAL Workshop on Recommendations for Location-based Services and Social Networks.2018:1-7.
[19] YUAN G,SUN P H,ZHAO J,et al.A review of moving object trajectory clustering algorithms[J].Artificial Intelligence Review,2017,47(1):123-144.
[20] CHOONG M Y,ANGELINE L,CHIN R K Y,et al.Modeling of vehicle trajectory clustering based on LCSS for traffic pattern extraction[C]//Proceedings of 2017 IEEE 2nd International Conference on Automatic Control and Intelligent Systems.2017:74-79.
[21] TANIARZA N,AKBAR S.Anomalous trajectory detectionfrom taxi GPS traces using combination of iBAT and DTW[C]//Proceedings of 2017 6th International Conference on Electrical Engineering and Informatics.2017:1-5.
[22] HE L,TAN H,HUANG Z C.Online handwritten signature veri-fication based on association of curvature and torsion feature with Hausdorff distance[J].Multimedia Tools and Applications,2019,78(14):19253-19278.
[23] BOMBELLI A,SOLER L,TRUMBAUER E,et al.Strategic Air Traffic Planning with Fréchet distance aggregation and rerouting[J].Journal of Guidance,Control,and Dynamics,2017,40(5):1117-1129.
[24] WANG S Z,CAO J N,YU P.Deep learning for spatio-temporal data mining:a survey[J/OL].IEEE Transactions on Knowledge and Data Engineering,2020.https://ieeexplore.ieee.org/abstract/document/9204396.
[25] GUO J Y,ZHANG R B,HU J M,et al.Convolutional trajectory similarity model:a faster method for trajectory similarity measurement[C]//Proceedings of 2019 IEEE Intelligent Transportation Systems Conference.2019:3770-3775.
[26] FERNANDO T,DENMAN S,SRIDHARAN S,et al.Soft+hardwired attention:An lstm framework for human trajectory prediction and abnormal event detection[J].Neural Networks,2018,108:466-478.
[27] CHEN Y S,JIANG H L,LI C Y,et al.Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[J].IEEE Transactions on Geoscience and Remote Sensing,2016,54(10):6232-6251.
[28] LIANG M H,LIU R W,LI S C,et al.An Unsupervised Lear-ning Method with Convolutional Auto-Encoder for Vessel Trajectory Similarity Computation[J].arXiv:2101.03169,2021.
[29] VINCENT P,LAROCHELLE H,LAJOIE I,et al.Stacked denoising autoencoders:Learning useful representations in a deep network with a local denoising criterion[J].Journal of Machine Learning Research,2010,11(12):3371-3408.
[30] ZHENG Y,OU Y Y.Malicious code classification method based on convolutional neural network and multi-feature fusion[J/OL].Computer Application Research,2021:1-6.https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2022&filename=JSYJ202201042&uniplatform=NZKPT&v=Sb4W-lpMfaok8nK2tyVOI5d6h4R37feTyENIX-nlKJ09g8hkdDa35w6mmLapavgf.
[31] CAO H T,SHI H J,SONG X L,et al.Research on Pedestrian Intention and Pedestrian trajectory Prediction Method based on Multi-feature Fusion[J/OL].China journal of highway,2021:1-14.https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=ZGGL20211105000&uniplatform=NZKPT&v=Aq8LhxO6l42oqWeUFtfiiehoaUAy6OhuATe0tEXyq9Z_8sNotEFwDNkn7AzeXfJD.
[32] WANG T Z,YE C Y,ZHOU H,et al.AIS Ship TrajectoryClustering Based on Convolutional Auto-encoder[C]//Procee-dings of SAI Intelligent Systems Conference.2020:529-546.
[1] 李鹏祖, 李瑶, Ibegbu Nnamdi JULIAN, 孙超, 郭浩, 陈俊杰.
基于多特征融合的重叠组套索脑功能超网络构建及分类
Construction and Classification of Brain Function Hypernetwork Based on Overlapping Group Lasso with Multi-feature Fusion
计算机科学, 2022, 49(5): 206-211. https://doi.org/10.11896/jsjkx.210300049
[2] 瞿中, 陈雯.
基于空洞卷积和多特征融合的混凝土路面裂缝检测
Concrete Pavement Crack Detection Based on Dilated Convolution and Multi-features Fusion
计算机科学, 2022, 49(3): 192-196. https://doi.org/10.11896/jsjkx.210100164
[3] 牛富生, 郭延哺, 李维华, 刘文洋.
基于序列特征融合的蛋白质可溶性预测
Protein Solubility Prediction Based on Sequence Feature Fusion
计算机科学, 2022, 49(1): 285-291. https://doi.org/10.11896/jsjkx.201100117
[4] 高岩, 闫秋艳, 夏士雄, 张紫涵.
基于骨骼轨迹聚合模型的课堂交互群体发现
Interactive Group Discovery Based on Skeleton Trajectory Aggregation Model in ClassEnvironment
计算机科学, 2021, 48(8): 334-339. https://doi.org/10.11896/jsjkx.201000036
[5] 吕金娜, 邢春玉, 李莉.
基于多特征融合的细粒度视频人物关系抽取
Video Character Relation Extraction Based on Multi-feature Fusion and Fine-granularity Analysis
计算机科学, 2021, 48(4): 117-122. https://doi.org/10.11896/jsjkx.200800160
[6] 栾晓, 李晓双.
基于多特征融合的人脸活体检测算法
Face Anti-spoofing Algorithm Based on Multi-feature Fusion
计算机科学, 2021, 48(11A): 409-415. https://doi.org/10.11896/jsjkx.210100181
[7] 原晓佩, 陈小锋, 廉明.
基于Haar-like和LBP的多特征融合目标检测算法
Improved Multi-feature Fusion Algorithm for Target Detection Based on Haar-like and LBP
计算机科学, 2021, 48(11): 219-225. https://doi.org/10.11896/jsjkx.201100174
[8] 吴宏涛, 刘力源, 孟颖, 荣亚鹏, 李路凯.
动态多特征融合的道路遗洒物威胁度分析方法
Novel Threat Degree Analysis Method for Scattered ObJects in Road Traffic Based on Dynamic Multi-feature Fusion
计算机科学, 2020, 47(6A): 196-205. https://doi.org/10.11896/JsJkx.190900066
[9] 胡宇佳, 甘伟, 朱敏.
基于多特征融合的增强子-启动子相互作用预测综述
Enhancer-Promoter Interaction Prediction Based on Multi-feature Fusion
计算机科学, 2020, 47(5): 64-71. https://doi.org/10.11896/jsjkx.191100027
[10] 金堃, 陈少昌.
步态识别现状与发展
Status and Development of Gait Recognition
计算机科学, 2019, 46(6A): 30-34.
[11] 王晓, 邹泽伟, 李勃勃, 王静.
基于多特征融合的彩色图像声呐目标检测
Target Detection in Colorful Imaging Sonar Based on Multi-feature Fusion
计算机科学, 2019, 46(6A): 177-181.
[12] 曾凡智, 周燕, 余家豪, 罗粤, 邱腾达, 钱杰昌.
基于无监督学习的二维工程CAD模型端到端检索算法
End-to-End Retrieval Algorithm of Two-dimensional Engineering CAD Model Based on Unsupervised Learning
计算机科学, 2019, 46(12): 298-305. https://doi.org/10.11896/jsjkx.190900003
[13] 许华杰, 吴青华, 胡小明.
基于轨迹多特性的隐私保护算法
Privacy Protection Algorithm Based on Multi-characteristics of Trajectory
计算机科学, 2019, 46(1): 190-195. https://doi.org/10.11896/j.issn.1002-137X.2019.01.029
[14] 张玉雪,唐振民,钱彬,徐威.
基于稀疏表示和多特征融合的路面裂缝检测
Pavement Crack Detection Based on Sparse Representation and Multi-feature Fusion
计算机科学, 2018, 45(7): 271-277. https://doi.org/10.11896/j.issn.1002-137X.2018.07.047
[15] 陈嵘, 李鹏, 黄勇.
基于多特征融合的运动阴影去除算法
Moving Shadow Removal Algorithm Based on Multi-feature Fusion
计算机科学, 2018, 45(6): 291-295. https://doi.org/10.11896/j.issn.1002-137X.2018.06.051
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!