计算机科学 ›› 2022, Vol. 49 ›› Issue (6A): 256-260.doi: 10.11896/jsjkx.211100253
郁舒昊, 周辉, 叶春杨, 王太正
YU Shu-hao, ZHOU Hui, YE Chun-yang, WANG Tai-zheng
摘要: 随着航运业的快速发展,船舶轨迹挖掘与分析技术变得愈发重要,轨迹聚类在船舶领域有很多实际应用,如异常检测、位置预测、船舶避碰等。传统的轨迹相似度计算方法在精确度和效率上都较为低下,而现有的基于深度学习的方法大多数只提取静态特征,忽视了静态与动态的多特征的综合提取。为了解决这一问题,提出了一种基于卷积自编码器的静态-动态特征融合模型,用于提取更完善的船舶轨迹特征,弥补了多特征融合技术在船舶轨迹聚类应用方面的不足。在真实数据集上的实验结果表明,相比LCSS,DTW等传统方法以及基于深度学习的多特征提取模型,所提模型在精确率、准确率等指标上均至少有5%~10%的提升。
中图分类号:
[1] TU E,ZHANG G,RACHMAWATI L,et al.Exploiting AIS data for intelligent maritime navigation:a comprehensive survey from data to methodology[J].IEEE Transactions on Intelligent Transportation Systems,2017,19(5):1559-1582. [2] ZHOU P P,DING Q H,LUO H B,et al.Anomaly trajectory detectionbased on DBSCAN clustering algorithm[J].Infrared and Laser Engineering,2017,46(5):238-245. [3] YANG H,BAI Y Q,LIU L,et al.Research on air transportChannels in the process of air pollution in Henan area based on trajectory clustering[J].Journal of Meteorology and Environment,2017,33(4):29-39. [4] ZHAO Y D,WANG C,LI S M,et al.Reliable clustering method of flight trajectory in terminal area based on resampling[J].Journal of Southwest Jiaotong University,2017,52(4):817-825,834. [5] YANG S L,BI S B,NKUNZIMANA A,et al.A spatial clustering method of taxi passenger trajectory[J].Computer Engineering and Applications,2018,54(14):249-255. [6] WANG W G,CHU X M,JIANG Z L,et al.Classification of ship trajectories by using naive bayesian algorithm[C]//Proceedings of the 5th International Conference on Transportation Information and Safety.2019:466-470. [7] SU H,LIU S C,ZHENG B L,et al.A survey of trajectory distance measures and performance evaluation[J].The Very Large Data Base Journal,2020,29(1):3-32. [8] RUBINSTEIN A,SONG Z.Reducing approximate longest common subsequence to approximate edit distance[C]//Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms,Society for Industrial and Applied Mathematics.2020:1591-1600. [9] LI H H,LIU J X,YANG Z L,et al.Adaptively constrained dynamic time warping for time series classification and clustering[J].Information Sciences,2020,534:97-116. [10] KARIMI D,SALCUDEAN S E.Reducing the hausdorff distance in medical image segmentation with convolutional neural networks[J].IEEE Transactions on Medical Imaging,2019,39(2):499-513. [11] BUCHIN K,DIEZ Y,VAN DIGGELEN T,et al.Efficient tra-jectory queries under the Fréchet distance (GIS Cup)[C]//Proceedings of the 25th ACM SIGSPATIAL International Confe-rence on Advances in Geographic Information Systems.2017:1-4. [12] YAO D,ZHANG C,ZHU Z H,et al.Trajectory clustering via deep representation learning [C]//Proceedings of 2017 International Joint Conference on Neural Networks.2017:3880-3887. [13] SUTSKEVER I,VINYALS O,LE Q V.Sequence to sequence learning with neural networks [C]//Proceedings of Conference and Workshop on Neural Information Processing Systems.2014:3104-3112. [14] DABIRI S,LU C T,HEASLIP K,et al.Semi-supervised deep learning approach for transportation mode identification using GPS trajectory data[J].IEEE Transactions on Knowledge and Data Engineering,2019,32(5):1010-1023. [15] PAN Y C,WU D S,OLSON D L.Online to offline (O2O) ser-vice recommendation method based on multi-dimensional simila-rity measurement[J].Decision Support Systems,2017,103:1-8. [16] MAO Y C,ZHONG H S,XIAO X J,et al.A segment-based trajectory similarity measure in the urban transportation systems[J].Sensors,2017,17(3):524. [17] SHANG S,CHEN L C,WEI Z,et al.Parallel trajectory simila-rity joins in spatial networks[J].The Very Large Data Base Journal,2018,27(3):395-420. [18] PESARA A C,PATIL V,ATREY P K.Secure computing of gps trajectory similarity:a review [C]//Proceedings of the 2nd ACM SIGSPATIAL Workshop on Recommendations for Location-based Services and Social Networks.2018:1-7. [19] YUAN G,SUN P H,ZHAO J,et al.A review of moving object trajectory clustering algorithms[J].Artificial Intelligence Review,2017,47(1):123-144. [20] CHOONG M Y,ANGELINE L,CHIN R K Y,et al.Modeling of vehicle trajectory clustering based on LCSS for traffic pattern extraction[C]//Proceedings of 2017 IEEE 2nd International Conference on Automatic Control and Intelligent Systems.2017:74-79. [21] TANIARZA N,AKBAR S.Anomalous trajectory detectionfrom taxi GPS traces using combination of iBAT and DTW[C]//Proceedings of 2017 6th International Conference on Electrical Engineering and Informatics.2017:1-5. [22] HE L,TAN H,HUANG Z C.Online handwritten signature veri-fication based on association of curvature and torsion feature with Hausdorff distance[J].Multimedia Tools and Applications,2019,78(14):19253-19278. [23] BOMBELLI A,SOLER L,TRUMBAUER E,et al.Strategic Air Traffic Planning with Fréchet distance aggregation and rerouting[J].Journal of Guidance,Control,and Dynamics,2017,40(5):1117-1129. [24] WANG S Z,CAO J N,YU P.Deep learning for spatio-temporal data mining:a survey[J/OL].IEEE Transactions on Knowledge and Data Engineering,2020.https://ieeexplore.ieee.org/abstract/document/9204396. [25] GUO J Y,ZHANG R B,HU J M,et al.Convolutional trajectory similarity model:a faster method for trajectory similarity measurement[C]//Proceedings of 2019 IEEE Intelligent Transportation Systems Conference.2019:3770-3775. [26] FERNANDO T,DENMAN S,SRIDHARAN S,et al.Soft+hardwired attention:An lstm framework for human trajectory prediction and abnormal event detection[J].Neural Networks,2018,108:466-478. [27] CHEN Y S,JIANG H L,LI C Y,et al.Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[J].IEEE Transactions on Geoscience and Remote Sensing,2016,54(10):6232-6251. [28] LIANG M H,LIU R W,LI S C,et al.An Unsupervised Lear-ning Method with Convolutional Auto-Encoder for Vessel Trajectory Similarity Computation[J].arXiv:2101.03169,2021. [29] VINCENT P,LAROCHELLE H,LAJOIE I,et al.Stacked denoising autoencoders:Learning useful representations in a deep network with a local denoising criterion[J].Journal of Machine Learning Research,2010,11(12):3371-3408. [30] ZHENG Y,OU Y Y.Malicious code classification method based on convolutional neural network and multi-feature fusion[J/OL].Computer Application Research,2021:1-6.https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2022&filename=JSYJ202201042&uniplatform=NZKPT&v=Sb4W-lpMfaok8nK2tyVOI5d6h4R37feTyENIX-nlKJ09g8hkdDa35w6mmLapavgf. [31] CAO H T,SHI H J,SONG X L,et al.Research on Pedestrian Intention and Pedestrian trajectory Prediction Method based on Multi-feature Fusion[J/OL].China journal of highway,2021:1-14.https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=ZGGL20211105000&uniplatform=NZKPT&v=Aq8LhxO6l42oqWeUFtfiiehoaUAy6OhuATe0tEXyq9Z_8sNotEFwDNkn7AzeXfJD. [32] WANG T Z,YE C Y,ZHOU H,et al.AIS Ship TrajectoryClustering Based on Convolutional Auto-encoder[C]//Procee-dings of SAI Intelligent Systems Conference.2020:529-546. |
[1] | 李鹏祖, 李瑶, Ibegbu Nnamdi JULIAN, 孙超, 郭浩, 陈俊杰. 基于多特征融合的重叠组套索脑功能超网络构建及分类 Construction and Classification of Brain Function Hypernetwork Based on Overlapping Group Lasso with Multi-feature Fusion 计算机科学, 2022, 49(5): 206-211. https://doi.org/10.11896/jsjkx.210300049 |
[2] | 瞿中, 陈雯. 基于空洞卷积和多特征融合的混凝土路面裂缝检测 Concrete Pavement Crack Detection Based on Dilated Convolution and Multi-features Fusion 计算机科学, 2022, 49(3): 192-196. https://doi.org/10.11896/jsjkx.210100164 |
[3] | 牛富生, 郭延哺, 李维华, 刘文洋. 基于序列特征融合的蛋白质可溶性预测 Protein Solubility Prediction Based on Sequence Feature Fusion 计算机科学, 2022, 49(1): 285-291. https://doi.org/10.11896/jsjkx.201100117 |
[4] | 高岩, 闫秋艳, 夏士雄, 张紫涵. 基于骨骼轨迹聚合模型的课堂交互群体发现 Interactive Group Discovery Based on Skeleton Trajectory Aggregation Model in ClassEnvironment 计算机科学, 2021, 48(8): 334-339. https://doi.org/10.11896/jsjkx.201000036 |
[5] | 吕金娜, 邢春玉, 李莉. 基于多特征融合的细粒度视频人物关系抽取 Video Character Relation Extraction Based on Multi-feature Fusion and Fine-granularity Analysis 计算机科学, 2021, 48(4): 117-122. https://doi.org/10.11896/jsjkx.200800160 |
[6] | 栾晓, 李晓双. 基于多特征融合的人脸活体检测算法 Face Anti-spoofing Algorithm Based on Multi-feature Fusion 计算机科学, 2021, 48(11A): 409-415. https://doi.org/10.11896/jsjkx.210100181 |
[7] | 原晓佩, 陈小锋, 廉明. 基于Haar-like和LBP的多特征融合目标检测算法 Improved Multi-feature Fusion Algorithm for Target Detection Based on Haar-like and LBP 计算机科学, 2021, 48(11): 219-225. https://doi.org/10.11896/jsjkx.201100174 |
[8] | 吴宏涛, 刘力源, 孟颖, 荣亚鹏, 李路凯. 动态多特征融合的道路遗洒物威胁度分析方法 Novel Threat Degree Analysis Method for Scattered ObJects in Road Traffic Based on Dynamic Multi-feature Fusion 计算机科学, 2020, 47(6A): 196-205. https://doi.org/10.11896/JsJkx.190900066 |
[9] | 胡宇佳, 甘伟, 朱敏. 基于多特征融合的增强子-启动子相互作用预测综述 Enhancer-Promoter Interaction Prediction Based on Multi-feature Fusion 计算机科学, 2020, 47(5): 64-71. https://doi.org/10.11896/jsjkx.191100027 |
[10] | 金堃, 陈少昌. 步态识别现状与发展 Status and Development of Gait Recognition 计算机科学, 2019, 46(6A): 30-34. |
[11] | 王晓, 邹泽伟, 李勃勃, 王静. 基于多特征融合的彩色图像声呐目标检测 Target Detection in Colorful Imaging Sonar Based on Multi-feature Fusion 计算机科学, 2019, 46(6A): 177-181. |
[12] | 曾凡智, 周燕, 余家豪, 罗粤, 邱腾达, 钱杰昌. 基于无监督学习的二维工程CAD模型端到端检索算法 End-to-End Retrieval Algorithm of Two-dimensional Engineering CAD Model Based on Unsupervised Learning 计算机科学, 2019, 46(12): 298-305. https://doi.org/10.11896/jsjkx.190900003 |
[13] | 许华杰, 吴青华, 胡小明. 基于轨迹多特性的隐私保护算法 Privacy Protection Algorithm Based on Multi-characteristics of Trajectory 计算机科学, 2019, 46(1): 190-195. https://doi.org/10.11896/j.issn.1002-137X.2019.01.029 |
[14] | 张玉雪,唐振民,钱彬,徐威. 基于稀疏表示和多特征融合的路面裂缝检测 Pavement Crack Detection Based on Sparse Representation and Multi-feature Fusion 计算机科学, 2018, 45(7): 271-277. https://doi.org/10.11896/j.issn.1002-137X.2018.07.047 |
[15] | 陈嵘, 李鹏, 黄勇. 基于多特征融合的运动阴影去除算法 Moving Shadow Removal Algorithm Based on Multi-feature Fusion 计算机科学, 2018, 45(6): 291-295. https://doi.org/10.11896/j.issn.1002-137X.2018.06.051 |
|