计算机科学 ›› 2021, Vol. 48 ›› Issue (11A): 39-45.doi: 10.11896/jsjkx.210600124
张宁, 方靖雯, 赵雨宣
ZHANG Ning, FANG Jing-wen, ZHAO Yu-xuan
摘要: 聚焦于具有极度非线性、非平稳性等特征的比特币价格预测问题,在长短时记忆网络(Long Short-Term Memory,LSTM)基础上构建了4个混合预测模型,利用小波变换(Wavelet Transform,WT)以及自适应噪声的完备经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)对序列进行分解与重构,并引入了样本熵(Sample Entropy,SE)进行重构优化,使用LSTM对重构以后的子序列分别进行预测,最后将其叠加得到最终的预测结果。在预测结果的评判上,使用均方根误、平均绝对百分误以及希尔不等系数来进行拟合评价,并将结果与单一LSTM模型进行比较。研究发现混合模型的预测准确性均优于单一模型,且样本熵的引入可有效降低预测误差。
中图分类号:
[1]DONALDSON R G,KAMSTRA M.Neural network forecastcombining with interactioneffects[J].Journal of the Franklin Institute,1999,336(2):227-236. [2]TAKEUCHI L,LEE Y Y A.Applying deep learning to enhance momentum trading strategies in stocks[R].Technical Report,Stanford University,2013. [3]WU W,CHEN W Q,LIU B.Prediction of ups and downs ofstock market by BP neural networks [J].Journal of Dalian University of Technology,2001,41(1):9-15. [4]SONGX Y,CHEN N S.Financial prediction system based oncombination of genetic algorithm with BP neural network [J].Journal of Shanghai Jiao Tong University,2016,50(2):313-316. [5]SUTSKEVER I,VINYALS O,LE Q V.Sequence to sequencelearning with neural networks[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems-Volume 2.2014:3104-3112. [6]GRAVES A,JAITLY N.Towards end-to-end speech recogni-tion with recurrent neural networks[C]//International Confe-rence on Machine Learning.PMLR,2014:1764-1772. [7] ROONDIWALA M,PATEL H,VARMA S.Predicting stockprices using LSTM[J].International Journal of Science and Research,2017,6(4):1754-1756. [8] BAO W,YUE J,RAO Y.A deep learning framework for financial time series using stacked autoencoders and long-short term memory[J].PloS one,2017,12(7):e0180944. [9] SHAH D,ZHANG K.Bayesian regression and Bitcoin[C]//2014 52nd annual Allerton conference on communication,control,and computing (Allerton).IEEE,2014:409-414. [10]YANG S Y,KIM J.Bitcoin Market Return and Volatility Forecasting Using Transaction Network Flow Properties[C]// 2015 IEEE Symposium Series on Computational Intelligence (SSCI).IEEE,2015. [11] MCNALLY S,ROCHE J,CATON S.Predicting the price of bitcoin using machine learning[C]//2018 26th Euromicro International Conference on Parallel,Distributed and Network-based Processing (PDP).IEEE,2018:339-343. [12]STENQVIST E,LÖNNÖ J.Predicting Bitcoin price fluctuation with Twitter sentiment analysis[EB/OL].(2017-06-16) [2018-01-13].http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-209191. [13]RAVI C.Fuzzy Crow Search Algorithm-Based Deep LSTM for Bitcoin Prediction[J].International Journal of Distributed Systems and Technologies (IJDST),2020,11(4):53-71. [14]ZHANG X,LAI K K,WANG S Y.A new approach for crude oil price analysis based on empirical mode decomposition[J].Energy Economics,2008,30(3):905-918. [15]TORRES M E,COLOMINAS M A,SCHLOTTHAUER G,et al.A complete ensemble empirical mode decomposition with adaptive noise[C]//2011 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP).IEEE,2011:4144-4147. |
[1] | 罗婷瑞, 贾建, 张瑞. 基于可调Q因子小波变换和迁移学习的癫痫脑电信号检测[J]. 计算机科学, 2020, 47(7): 199-205. |
[2] | 刘云,尹传环,胡迪,赵田,梁宇. 基于循环神经网络的通信卫星故障检测[J]. 计算机科学, 2020, 47(2): 227-232. |
[3] | 文豪, 陈昊. 基于LSTM循环神经网络的税收预测[J]. 计算机科学, 2020, 47(11A): 437-443. |
[4] | 王启发, 王中卿, 李寿山, 周国栋. 基于交叉注意力机制和新闻正文的评论情感分类[J]. 计算机科学, 2020, 47(10): 222-227. |
[5] | 张阳峰, 韦仕鸿, 邓娜娜, 王文瑞. 基于小波降噪的振动传感器数据分析[J]. 计算机科学, 2019, 46(6A): 537-539. |
[6] | 刘佳慧, 王昱洁, 雷艺. 基于LSTM的CSI手势识别方法[J]. 计算机科学, 2019, 46(11A): 283-288. |
[7] | 高忠石, 苏旸, 柳玉东. 基于PCA-LSTM的入侵检测研究[J]. 计算机科学, 2019, 46(11A): 473-476. |
[8] | 王倩, 于来行, 曹彦, 张磊, 秦杰, 叶海琴. 基于Fibonacci置乱的小波域数字图像盲水印算法[J]. 计算机科学, 2018, 45(6): 135-140. |
[9] | 司念文,王衡军,李伟,单义栋,谢鹏程. 基于注意力长短时记忆网络的中文词性标注模型[J]. 计算机科学, 2018, 45(4): 66-70. |
[10] | 杨艳春,李娇,党建武,王阳萍. 基于冗余小波变换与引导滤波的多聚焦图像融合[J]. 计算机科学, 2018, 45(2): 301-305. |
[11] | 翟奥博,温显斌,张鑫. 基于改进双树复小波和灰度-梯度共生矩阵的纹理图像检索算法[J]. 计算机科学, 2017, 44(6): 274-277. |
[12] | 张正伟,吴礼发,严云洋. 基于多尺度分解与预测误差扩展的可逆图像水印算法[J]. 计算机科学, 2017, 44(12): 100-104. |
[13] | 魏雅娟,范九伦,任方. 基于混沌和小波变换的音频加密算法[J]. 计算机科学, 2017, 44(12): 94-99. |
[14] | 曹义亲,贺亚飞,黄晓生. 基于区域特性的压缩感知多聚焦融合算法[J]. 计算机科学, 2017, 44(1): 295-299. |
[15] | 楚建浦,何光辉,刘玉馨. 优化的小波变换和改进的LDA相融合的人脸识别算法[J]. 计算机科学, 2016, 43(Z11): 147-150. |
|