计算机科学 ›› 2022, Vol. 49 ›› Issue (3): 294-300.doi: 10.11896/jsjkx.210100180

• 人工智能 • 上一篇    下一篇

基于交互注意力图卷积网络的方面情感分类

潘志豪, 曾碧, 廖文雄, 魏鹏飞, 文松   

  1. 广东工业大学计算机学院 广东 广州510006
  • 收稿日期:2021-01-23 修回日期:2021-06-08 出版日期:2022-03-15 发布日期:2022-03-15
  • 通讯作者: 曾碧(zb9215@gdut.edu.cn)
  • 作者简介:(pzh@mail2.gdut.edu.cn)
  • 基金资助:
    国家自然科学基金(61876043);广东省自然科学基金(2018A030313868);清远市工业高新技术领域技术攻关项目(2020KJJH039)

Interactive Attention Graph Convolutional Networks for Aspect-based Sentiment Classification

PAN Zhi-hao, ZENG Bi, LIAO Wen-xiong, WEI Peng-fei, WEN Song   

  1. School of Computer,Guangdong University of Technology,Guangzhou,Guangdong 510006,China
  • Received:2021-01-23 Revised:2021-06-08 Online:2022-03-15 Published:2022-03-15
  • About author:PAN Zhi-hao,born in 1997,postgra-duate.His main research interests include natural language processing and emotion analysis.
    ZENG Bi,born in 1963,professor,is a senior member of China Computer Federation.Her main research interests include machine learning and big data applications.
  • Supported by:
    National Natural Science Foundation of China(61876043), Natural Science Foundation of Guangdong Province(2018A030313868) and Key Technology Projects in High-Tech Industrial Field of Qingyuan(2020KJJH039).

摘要: 基于方面的情感分类任务旨在识别句子中给定方面词的情感倾向性。以往的方法大多基于长短时记忆网络和注意力机制,这种做法在很大程度上仅依赖于建模句子中的方面词与其上下文的语义相关性,但忽略了句中的语法信息。针对这种缺陷,提出了一种交互注意力的图卷积网络,同时建模了句中单词的语义相关性和语法相关性。首先使用双向长短时记忆网络来学习句子的词序关系,捕捉句中上下文的语义信息;其次引入位置信息后,通过图卷积网络来学习句中的语法信息;然后通过一种掩码机制提取方面词;最后使用交互注意力机制,交互计算特定方面的上下文表示,并将其作为最后的分类特征。通过这种优势互补的设计,该模型可以很好地获得聚合了目标方面信息的上下文表示,并有助于情感分类。实验结果表明,该模型在多个数据集上都获得了优秀的效果。与未考虑语法信息的Bi-IAN模型相比,该模型在所有数据集上的结果均优于Bi-IAN模型,尤其在餐厅领域的REST14,REST15和REST16数据集上,该模型的F1值较Bi-IAN模型分别提高了4.17%,7.98%和8.03%;与同样考虑了语义信息和语法信息的ASGCN模型相比,该模型的F1值在除了LAP14数据集外的其他数据集上均优于ASGCN模型,尤其在餐厅领域的REST14,REST15和REST16数据集上,该模型的F1值较ASGCN模型分别提高了2.05%,1.66%和2.77%。

关键词: 方面情感分类, 交互注意力机制, 双向长短时记忆网络, 图卷积网络, 语法信息, 语义信息

Abstract: Aspect-based sentiment classification aims at identifying the sentiment polarity of the given aspect in a sentence.Most of the previous methods are based on long short-term memory network(LSTM)and attention mechanisms,which largely rely on the semantic correlation between aspects and contextual words in the modeled sentence,but ignore the syntactic information in the sentence.To tackle this problem,an interactive attention graph convolutional network(IAGCN) is proposed to model the semantic correlation and syntactic correlation of words in a sentence.Firstly,IAGCN starts with a bi-directional long short-term memory network(BiLSTM) to capture contextual semantic information regarding word orders.Then,the position information is introduced and put it into the graph convolutional network to learn the syntactic information.After that,aspect representation is obtained through mask mechanism.Finally,the interactive attention mechanism is used to interactively calculate and generate the aspect-specific contextual representation as the final classification feature.Through this complementary design,the model can obtain a good contextual representation that aggregates the aspect target information,and is helpful for sentiment classification.Experimental results show that the model achieve a good performance on multiple datasets.Compared with the Bi-IAN model without considering the syntax information,our model are superior to Bi-IAN model on all datasets,especially on the REST14,REST15 and REST16 datasets in the restaurant domain.Our model improves by 4.17%,7.98% and 8.03% on F1 scores respectively compare with the Bi-IAN model.Compared with the ASGCN model,which also takes semantic information and syntax information into account,the F1 scores of our model is better than that of the ASGCN model in all datasets except LAP14 dataset,especially on the REST14,REST15 and REST16 datasets in the restaurant domain.Compared with the ASGCN model,the F1 scores of our model is increased by 2.05%,1.66% and 2.77% respectively.

Key words: Aspect-based sentiment classification, Bi-directional long short-term memory network, Graph convolutional networks, Interactive attention mechanism, Semantic information, Syntactical information

中图分类号: 

  • TP391
[1]KIRITCHENKO S,ZHU X,CHERRY C,et al.NRC-Canada-2014:Detecting aspects and sentiment in customer reviews[C]//Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014).2014:437-442.
[2]HUANG B,OU Y,CARLEY K M.Aspect level sentiment classification with attention-over-attention neural networks[C]//International Conference on Social Computing,Behavioral-Cultural Modeling and Prediction and Behavior Representation in Modeling and Simulation.2018:197-206.
[3]TANG D,QIN B,FENG X,et al.Effective LSTMs for target-dependent sentiment classification[J].arXiv:1512.01100,2015.
[4]TANG D,QIN B,LIU T.Aspect level sentiment classification with deep memory network[J].arXiv:1605.08900,2016.
[5]WANG Y,HUANG M,ZHU X,et al.Attention-based LSTM for aspect-level sentiment classification[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing.2016:606-615.
[6]LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-based learning applied to document recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324.
[7]HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780.
[8]MNIH V,HEESS N,GRAVES A.Recurrent models of visual attention[J].Advances in Neural Information Processing Systems,2014,27:2204-2212.
[9]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[J].arXiv:1609.02907,2016.
[10]HUANG B,CARLEY K M.Syntax-aware aspect level sentiment classification with graph attention networks[J].arXiv:1909.02606,2019.
[11]ZHANG C,LI Q,SONG D.Aspect-based sentiment classification with aspect-specific graph convolutional networks[J].ar-Xiv:1909.03477,2019.
[12]MA D,LI S,ZHANG X,et al.Interactive attention networks for aspect-level sentiment classification[J].arXiv:1709.00893,2017.
[13]JIANG L,YU M,ZHOU M,et al.Target-dependent twittersentiment classification[C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:Human Language Technologies.2011:151-160.
[14]LI C B,DUAN Q J,JI C H,et al,Method of Short Text Classification Based on CHI and TF-IWF Feature Selection[J].Journal of Chongqing University of Technology (Natural Science),2021,35(5):135-140,222.
[15]LI X,BING L,LAM W,et al.Transformation networks for target-oriented sentiment classification[J].arXiv:1805.01086,2018.
[16]HUANG B,CARLEY K M.Parameterized convolutional neural networks for aspect level sentiment classification[J].arXiv:1909.06276,2019.
[17]XU Z D,CHEN B Y,WANG X,et al.Research on capsule network-based for aspect-level sentiment classification[J].Chinese Journal of Intelligent Science and Technology,2020,2(3):284-292.
[18]SUN Z F,WANG J.RCNN-BGRU-HN Network Model for Aspect-based Sentiment Analysis[J].Journal of Computer Science,2019,46(9):223-228.
[19]YIN J,CHI K K,HUAN R H.Aspect-level Sentiment Analysis of Text Based on ATT-DGRU[J].Computer Science,2021,48(5):217-224.
[20]PENNINGTON J,SOCHER R,MANNING C D.Glove:Global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Proces-sing (EMNLP).2014:1532-1543.
[21]ZHANG C,LI Q,SONG D.Syntax-aware aspect-level sentiment classification with proximity-weighted convolution network[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.2019:1145-1148.
[22]ZHAO P,HOU L,WU O.Modeling sentiment dependencieswith graph convolutional networks for aspect-level sentiment classification[J].Knowledge-Based Systems,2020,193:105443.
[23]DONG L,WEI F,TAN C,et al.Adaptive recursive neural network for target-dependent twitter sentiment classification[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (volume 2:Short Papers).2014:49-54.
[24]PONTIKI M,GALANIS D,PAVLOPOULOS J,et al.SemEval-2014 Task 4:Aspect Based Sentiment Analysis[C]//Procee-dings of the 8th International Workshop on Semantic Evaluation (SemEval 2014).2014:27-35.
[25]PONTIKI M,GALANIS D,PAPAGEORGIOU H,et al.Semeval-2015 task 12:Aspect based sentiment analysis[C]//Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015).2015:486-495.
[26]PONTIKI M,GALANIS D,PAPAGEORGIOU H,et al.Semeval-2016 task 5:Aspect based sentiment analysis[C]//International Workshop on Semantic Evaluation.2016:19-30.
[27]CHEN H,YANG Y,DU S D.Research on Aspect-Level Sentiment Analysis of User Reviews[J].Journal of Frontiers of Computer Science and Technology,2021,15(3):478-485.
[1] 闫佳丹, 贾彩燕.
基于双图神经网络信息融合的文本分类方法
Text Classification Method Based on Information Fusion of Dual-graph Neural Network
计算机科学, 2022, 49(8): 230-236. https://doi.org/10.11896/jsjkx.210600042
[2] 汪鸣, 彭舰, 黄飞虎.
基于多时间尺度时空图网络的交通流量预测模型
Multi-time Scale Spatial-Temporal Graph Neural Network for Traffic Flow Prediction
计算机科学, 2022, 49(8): 40-48. https://doi.org/10.11896/jsjkx.220100188
[3] 金方焱, 王秀利.
融合RACNN和BiLSTM的金融领域事件隐式因果关系抽取
Implicit Causality Extraction of Financial Events Integrating RACNN and BiLSTM
计算机科学, 2022, 49(7): 179-186. https://doi.org/10.11896/jsjkx.210500190
[4] 李健智, 王红玲, 王中卿.
基于图卷积网络的专利摘要自动生成研究
Automatic Generation of Patent Summarization Based on Graph Convolution Network
计算机科学, 2022, 49(6A): 172-177. https://doi.org/10.11896/jsjkx.210400117
[5] 郭亮, 杨兴耀, 于炯, 韩晨, 黄仲浩.
基于注意力机制和门控网络相结合的混合推荐系统
Hybrid Recommender System Based on Attention Mechanisms and Gating Network
计算机科学, 2022, 49(6): 158-164. https://doi.org/10.11896/jsjkx.210500013
[6] 赵小虎, 叶圣, 李晓.
多算法融合的骨骼重建信息动作分类方法
Multi-algorithm Fusion Behavior Classification Method for Body Bone Information Reconstruction
计算机科学, 2022, 49(6): 269-275. https://doi.org/10.11896/jsjkx.210500070
[7] 周海榆, 张道强.
面向多中心数据的超图卷积神经网络及应用
Multi-site Hyper-graph Convolutional Neural Networks and Application
计算机科学, 2022, 49(3): 129-133. https://doi.org/10.11896/jsjkx.201100152
[8] 解宇, 杨瑞玲, 刘公绪, 李德玉, 王文剑.
基于动态拓扑图的人体骨架动作识别算法
Human Skeleton Action Recognition Algorithm Based on Dynamic Topological Graph
计算机科学, 2022, 49(2): 62-68. https://doi.org/10.11896/jsjkx.210900059
[9] 丁锋, 孙晓.
基于注意力机制和BiLSTM-CRF的消极情绪意见目标抽取
Negative-emotion Opinion Target Extraction Based on Attention and BiLSTM-CRF
计算机科学, 2022, 49(2): 223-230. https://doi.org/10.11896/jsjkx.210100046
[10] 邵海琳, 季怡, 刘纯平, 徐云龙.
基于增强特征金字塔网络的场景文本检测算法
Scene Text Detection Algorithm Based on Enhanced Feature Pyramid Network
计算机科学, 2022, 49(2): 248-255. https://doi.org/10.11896/jsjkx.201100072
[11] 宋龙泽, 万怀宇, 郭晟楠, 林友芳.
面向出租车空载时间预测的多任务时空图卷积网络
Multi-task Spatial-Temporal Graph Convolutional Network for Taxi Idle Time Prediction
计算机科学, 2021, 48(7): 112-117. https://doi.org/10.11896/jsjkx.201000089
[12] 程思伟, 葛唯益, 王羽, 徐建.
BGCN:基于BERT和图卷积网络的触发词检测
BGCN:Trigger Detection Based on BERT and Graph Convolution Network
计算机科学, 2021, 48(7): 292-298. https://doi.org/10.11896/jsjkx.200500133
[13] 吴兰, 王涵, 李斌全.
基于自监督任务最优选择的无监督域自适应方法
Unsupervised Domain Adaptive Method Based on Optimal Selection of Self-supervised Tasks
计算机科学, 2021, 48(6A): 357-363. https://doi.org/10.11896/jsjkx.201000030
[14] 宋元隆, 吕光宏, 王桂芝, 贾吾财.
基于图卷积神经网络的SDN网络流量预测
SDN Traffic Prediction Based on Graph Convolutional Network
计算机科学, 2021, 48(6A): 392-397. https://doi.org/10.11896/jsjkx.200800090
[15] 吕明琪, 洪照雄, 陈铁明.
一种融合时空关联与社会事件的交通流预测方法
Traffic Flow Forecasting Method Combining Spatio-Temporal Correlations and Social Events
计算机科学, 2021, 48(2): 264-270. https://doi.org/10.11896/jsjkx.200300098
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!