计算机科学 ›› 2022, Vol. 49 ›› Issue (8): 184-190.doi: 10.11896/jsjkx.210600004
沈祥培1, 丁彦蕊1,2
SHEN Xiang-pei1, DING Yan-rui1,2
摘要: 在检测跟踪任务中,检测器存在误检和漏检目标的问题,导致依赖检测信息的视频多目标跟踪算法出现大量误跟和漏跟目标,这种漏跟和误跟会持续几十帧,降低了跟踪精度,为此提出了一种多检测器融合的深度相关滤波视频多目标跟踪算法。该算法融合多个检测器的信息,提出了一种新型融合机制,减少单个检测器的不足带来的漏检、误检数目,打破了单个检测器性能的局限性,使新生目标的获取更加可靠。此外,采用深度相关滤波算法ECO对目标进行逐个跟踪,并在原有ECO算法的基础上提出了一系列的改进方法,从而更贴合视频多目标跟踪任务,减少目标的漏跟数和身份标签跳变数。在MOT17数据集上进行实验,结果表明,与传统的视频多目标跟踪方法IOU17相比,所提算法的MOTA值从47.6提高至50.3,证明了所提方法在多目标跟踪研究上取得了很大的突破。
中图分类号:
[1]FU Z,FENG P,ANGELINI F,et al.Particle PHD Filter Based Multiple Human Tracking Using Online Group-Structured Dictionary Learning [J].IEEE Access,2018,14764-14778. [2]KUTSCHBACH T,BOCHINSKI E,EISELEIN V,et al.Se-quential Sensor Fusion Combining Probability Hypothesis Density and Kernelized Correlation Filters for Multi-Object Tra-cking in Video Data[C]//International Workshop on Traffic and Street Surveillance for Safety and Security at IEEE AVSS 2017.IEEE,2017. [3]FU Z,NAQVI S M,CHAMBERS J A.Collaborative Detector Fusion of Data-Driven PHD Filter for Online Multiple Human Tracking[C]//2018 International Conference on Information Fusion.2018. [4]DU Y K,JEON M.Robust multi-Bernoulli filtering for visualtracking[C]//The 2014 International Conference on Control,Automation and Information Sciences(ICCAIS 2014).IEEE,2015. [5]DU Y K.Multi-Bernoulli filtering for keypoint-based visualtracking[C]//2016 International Conference on Control,Automation and Information Sciences(ICCAIS).IEEE,2017. [6]FU Z,ANGELINI F,NAQVI S M,et al.GM-PHD Filter Based Online Multiple Human Tracking Using Deep Discriminative Correlation Matching[C]//2018 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).IEEE,2018. [7]LU Z,MAATEN L.Structure Preserving Object Tracking[C]//IEEE Conference on Computer Vision & Pattern Recognition.IEEE,2013. [8]ZHANG L,MAATEN L.Preserving Structure in Model-FreeTracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2014,36(4):756-769. [9]CHU P,LING H.Famnet:Joint learning of feature,affinity and multi-dimensional assignment for online multiple object tracking[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:6172-6181. [10]HENSCHEL R,LEAL-TAIXE L,CREMERS D,et al.Fusion of head and full-body detectors for multi-object tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.2018:1428-1437. [11]HU W,TAN T,WANG L,et al.A survey on visual surveillance of object motion and behaviors[J].IEEE Transactions on Systems,Man,and Cybernetics,Part C(Applications and Reviews),2004,34(3):334-352. [12]LI J L,YIN K,CHU C X,et al.Overview of Video Target Tracking Technology[J].Journal of Yanshan University,2019,43(3):251-262. [13]HENRIQUES J F,CASEIRO R,MARTINS P,et al.High-Speed Tracking with Kernelized Correlation Filters [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(3):583-96. [14]DANELLJAN M,ROBINSON A,KHAN F S,et al.Beyond correlation filters:Learning continuous convolution operators for visual tracking[C]//European Conference on Computer Vision.Cham:Springer,2016:472-488. [15]FELZENSZWALB P F,MCALLESTER D A,RAMANAN D.A discriminatively trained,multiscale,deformable part model[C]//2008 IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2008:1-8. [16]SZEGEDY C,TOSHEV A,ERHAN D.Deep Neural Networks for Object Detection[C]//NIPS.2013. [17]UIJLINGS,RR J,SANDE V D,et al.Selective search for object recognition[J].International Journal of Computer Vision,2013,104(2):154-171. [18]GIRSHICK R J C S.Fast r-cnn[C]//Proceedings of the IEEE International Conference on Computer Vision.2015:1440-1448. [19]REN S,HE K,GIRSHICK R,et al.Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks [J].arXiv:1506.01497,2015. [20]TAN M,PANG R,LE Q V.EfficientDet:Scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:10781-10790. [21]CHEN X,FANG H,LIN T Y,et al.Microsoft coco captions:Data collection and evaluation server[J].arXiv:1504.00325,2015. [22]BOLME D S,BEVERIDGE J R,DRAPER B A,et al.Visual object tracking using adaptive correlation filters[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.IEEE,2010:2544-2550. [23]DANELLJAN M,HÄGER G,KHAN F S,et al.Accurate scale estimation for robust visual tracking[C]//British Machine Vision Conference,Nottingham 2014.BMVA Press,2014:1-5. [24]YANG L,ZHU J.A scale adaptive kernel correlation filtertracker with feature integration[C]//European Conference on Computer Vision.Cham:Springer,2014:254-265. [25]DANELLJAN M,BHAT G,KHAN F S,et al.Eco:Efficient convolution operators for tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:6638-6646. [26]MILAN A,LEAL-TAIXE L,REID I,et al.MOT16:A benchmark for multi-object tracking[J].arXiv:1603.00831,2016. [27]DENDORFER P,OEP A,MILAN A,et al.A benchmark for single-camera multiple target tracking[J].International Journal of Computer Vision,2021,129(4):845-881. [28]BOCHINSKI E,EISELEIN V,SIKORA T.High-speed tra-cking-by-detection without using image information[C]//2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance(AVSS).IEEE,2017:1-6. [29]BEWLEY A,GE Z,OTT L,et al.Simple online and realtime tracking[C]//2016 IEEE International Conference on Image Processing(ICIP).IEEE,2016:3464-3468. [30]WOJKE N,BEWLEY A,PAULUS D J I.Simple Online andRealtime Tracking with a Deep Association Metric [J].IEEE,2017:3645-3649. |
[1] | 文成宇, 房卫东, 陈伟. 多目标跟踪的对象初始化综述 Object Initialization in Multiple Object Tracking:A Review 计算机科学, 2022, 49(3): 152-162. https://doi.org/10.11896/jsjkx.210200048 |
[2] | 刘彦, 秦品乐, 曾建朝. 基于YOLOv3与分层数据关联的多目标跟踪算法 Multi-object Tracking Algorithm Based on YOLOv3 and Hierarchical Data Association 计算机科学, 2021, 48(11A): 370-375. https://doi.org/10.11896/jsjkx.201000115 |
[3] | 龚轩, 乐孜纯, 王慧, 武玉坤. 多目标跟踪中的数据关联技术综述 Survey of Data Association Technology in Multi-target Tracking 计算机科学, 2020, 47(10): 136-144. https://doi.org/10.11896/jsjkx.200200041 |
[4] | 胡海根, 周莉莉, 周乾伟, 陈胜勇, 张俊康. 基于CNN的相衬显微图像序列的癌细胞多目标跟踪 Multi-target Tracking of Cancer Cells under Phase Contrast Microscopic Images Based on Convolutional Neural Network 计算机科学, 2019, 46(5): 279-285. https://doi.org/10.11896/j.issn.1002-137X.2019.05.043 |
[5] | 王正宁, 周阳, 吕侠, 曾凡伟, 张翔, 张锋军. 一种基于2D和3D联合信息的改进MDP跟踪算法 Improved MDP Tracking Method by Combining 2D and 3D Information 计算机科学, 2019, 46(3): 97-102. https://doi.org/10.11896/j.issn.1002-137X.2019.03.013 |
[6] | 赵广辉, 卓松, 徐晓龙. 基于卡尔曼滤波的多目标跟踪方法 Multi-object Tracking Algorithm Based on Kalman Filter 计算机科学, 2018, 45(8): 253-257. https://doi.org/10.11896/j.issn.1002-137X.2018.08.045 |
[7] | 袁大龙,纪庆革. 协同运动状态估计的多目标跟踪算法 Multiple Object Tracking Algorithm via Collaborative Motion Status Estimation 计算机科学, 2017, 44(Z11): 154-159. https://doi.org/10.11896/j.issn.1002-137X.2017.11A.032 |
[8] | 陈金广,秦晓姗,马丽丽. 快速多目标跟踪GM-PHD滤波算法 Fast GM-PHD Filter for Multi-target Tracking 计算机科学, 2016, 43(3): 317-321. https://doi.org/10.11896/j.issn.1002-137X.2016.03.060 |
[9] | 杨国亮,张进辉. 分层关联的多目标跟踪算法研究 Research on Multi-object Tracking Using Hierarchical Data Association 计算机科学, 2014, 41(9): 306-310. https://doi.org/10.11896/j.issn.1002-137X.2014.09.059 |
[10] | 金鑫,梁雪春,袁晓龙. 复杂情况下的多目标跟踪统计技术 Multi-target Tracking Statistical Techniques in Complex Case 计算机科学, 2013, 40(6): 268-271. |
[11] | 朱晓钢,杨兵,许华杰. 支持无线传感器网络多目标跟踪的聚类数据关联算法研究 Clustering Data Association Algorithm to Support Multi-target Tracl}ing in WSN 计算机科学, 2012, 39(Z6): 24-27. |
[12] | 周维,许海霞,郑金华. 基于RJMCMC的视觉多目标跟踪算法 Multi-object Visual Tracking Based on Reversible Jump Markov Chain Monte Carlo 计算机科学, 2012, 39(7): 270-275. |
[13] | 朱晓钢,杨兵,许华杰. 支持无线传感器网络多目标跟踪的最邻近数据关联算法研究 Nearest Neighbor Method Data Association Algorithm to Support Multi-target Tracking in WSN 计算机科学, 2011, 38(5): 67-70. |
[14] | 陈恒鑫 房斌 唐远炎 文静. 一种基于区域生长的多个形变目标跟踪方法 计算机科学, 2008, 35(4): 238-240. |
|