计算机科学 ›› 2022, Vol. 49 ›› Issue (11A): 210800144-11.doi: 10.11896/jsjkx.210800144
潘雨1,2, 王帅辉3, 张磊1, 胡谷雨1, 邹军华1, 王田丰1, 潘志松1
PAN Yu1,2, WANG Shuai-hui3, ZHANG Lei1, HU Gu-yu1, ZOU Jun-hua1, WANG Tian-feng1, PAN Zhi-song1
摘要: 在复杂网络中,社团结构是广泛存在的重要潜在结构。挖掘复杂网络中的社团结构,对探索网络潜在特性、理解网络组织结构、发现网络隐藏规律和交互模式等具有重要的理论和现实意义,是网络分析任务的关键研究内容。介绍了社团发现的背景和意义,并从静态网络社团发现和动态网络社团发现两个方面对社团发现的方法进行了总结和梳理。其中,静态网络的社团发现包括基于划分的社团发现方法、基于层次聚类的社团发现方法、基于模块度的社团发现方法、基于非负矩阵分解的社团发现方法和基于深度学习的社团发现方法。动态网络社团发现包括增量聚类的社团发现方法和演化聚类的社团发现方法。另外介绍了常用的社团发现评价指标,并在最后讨论了社团发现所面临的一些挑战及未来的发展方向。
中图分类号:
[1]WATTS D J,STROGATZ S H.Collective Dynamics of ‘small-world’ Networks[J].Nature,1998,393(6684):440-442. [2]BARABASI A L,ALBERT R.Emergence of Scaling in Random Networks[J].Science,1999,286(5439):509-512. [3]GIRVAN M,NEWMAN M E J.Community Structure in Social and Biological Networks[J].Proceedings of the National Academy of Sciences,2002,99(12):7821-7826. [4]FORTUNATO S,HRIC D.Community Detection in Networks:A User Guide[J].Physics Reports,2016,659:1-44. [5]LI G,CAI Z,YIN G,et al.Differentially Private Recommendation System Based on Community Detection in Social Network Applications[J].Security and Communication Networks,2018,2018:1-18. [6]JIN T,WU Q,OU X,et al.Community Detection and Co-author Recommendation in Co-author Networks[J].International Journal of Machine Learning and Cybernetics,2020(2):1-13. [7]LI C,BAI J,TANG H,et al.Opinion Community Detection and Opinion Leader Detection Based on Text Information and Network Topology in Cloud Environment[J].Information Scien-ces,2019,504(C):61-83. [8]BAHULKAR A,SZYMANSKIB K,BAYCIK N O,et al.Community Detection with Edge Augmentation in Criminal Networks[C]//IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining(ASONAM).2018:1168-1175. [9]BAZAGA A,VELLIDO A.Network Community Cluster-Based Analysis for the Identification of Potential Leukemia Drug Targets[J].WSOM 2019:Advances in Self-Organizing Maps,Learning Vector Quantization,Clustering and Data Visualization.2019:314-323. [10]ZU J,HU G,YAN J,et al.A Community Detection Based Ap-proach for Service Function Chain Online Placement in Data Center Network[J].Computer Communications,2021,169(1):168-178. [11]ZHANG S,ZHANG Y,ZHOU M,et al.Community DetectionBased on Similarities of Communication Behavior in IP Networks[J].Journal of Ambient Intelligence and Humanized Computing,2020(7307):1-11. [12]SHI D X,LI H,YANG R S,et al.User Daily Frequent Behavior Pattern Mining[J].Journal of National University of Defense Technology,2017,39(1):74-80. [13]FORTUNATO S.Community Detection in Graphs[J].Physics Reports,2009,486:3-5. [14]PORTER M A,ONNELA J P,MUCHA P J.Communities in Networks[J].Notices of the American Mathematical Society,2009,56(9):4294-4303. [15]YANG B,LIU D,LIU,J,et al.Discovering Communities from Social Networks[M]//Methodologies and Applications.Springer,2010:331-346. [16]NEWMAN M E,GIRVAN M.Finding and evaluating community structure in networks[J].Physical Review E,2004,69(2):026113. [17]KELLEY S,GPLDBERG M,MAGDON I M,et al.Defining and Discovering Communities in Social Networks[M]//Handbook of Optimization in Complex Networks.Springer,2012:139-168. [18]MACQUEEN J B.Some methods for classification and analysis of multivariate observations[C]//The Fifth Berkeley Sympo-sium on Mathematical Statistics and Probability.University of California Press,1967. [19]YANG B,LIU D,LIU,J,et al.Discovering Communities from Social Networks[M]//Methodologies and Applications.Sprin-ger,2010:331-346. [20]NEWMAN M E.Fast Algorithm for Detecting CommunityStructure in Networks[J].Phys Rev E Stat Nonlin Soft Matter Phys,2004,69(6 Pt 2):066133. [21]RAGHAVAN U N,REKA A,KUMARA S.Near Linear Time Algorithm to Detect Community Structures in Large-Scale Networks[J].Physical Review E,2007,76(3 Pt 2):036106. [22]ZHANG Y,ZHANG Y,CHEN Q,et al.True-link Clustering Through Signaling Process and Subcommunity Merge in Overlapping Community Detection[J].Neural Computing & Applications,2018,30(50):3613-3621. [23]RIEDY J,BADER D A,MEYERHENKE H.Scalable Multi-threaded Community Detection in Social Networks[C]//IEEE International Parallel & Distributed Processing Symposium Workshops & Phd Forum.2012:1619-1628. [24]BLONDEL V D,GUILLAUME J L,LAMBIOTTE R,et al.Fast Unfolding of Communities in Large Networks[J].Journal of Statistical Mechanics Theory & Experiment,2008(10):10008. [25]SHANG J,LIU L,XIE F,et al.A Real-Time Detecting Algorithm for Tracking Community Structure of Dynamic Networks[J].arXiv:1407.2683,2014. [26]CLAUSET A,NEWMAN M E,MOORE C.Finding Community Structure in Very Large Networks[J].Physical Review E,2004,70(6 Pt 2):066111. [27]LEUNG X,HUI P,LIO P,et al.Towards Real-time Community Detection in Large Networks[J].Physical Review E,2008,79(6 Pt 2):066107. [28]WU F,HUBERMAN B A.Finding Communities in LinearTime:A Physics Approach[J].European Physical Journal B-Condensed Matter,2004,38(2):331-338. [29]BAGROW J P,BOLLT E M.Local Method for Detecting Communities[J].Physical Review E,2005,72(4):046108. [30]LI N,CHEN G.Analysis of a Location-Based Social Network[C]//International Conference on Computational Science & Engineering.2009:263-270. [31]NI C,LIN Y,LUO F,et al.Community Detection on Networks with Ricci Flow[R].Sentific Reports,2019. [32]GORKE R,MAILLARD P,STAUST C,et al.Modularity-Driven Clustering of Dynamic Graphs[C]//International Symposium on Experimental Algorithms.2010:436-448. [33]FLAKE G W,LAWRENCE S,GILES C L,et al.Self-organization and Identification of Web Communities[J].Computer,2002,35(3):66-70. [34]GUIMERA R,SALESPARDO M,AMARAL L A,et al.Modularity from Fluctuations in Random Graphs and Complex Networks[J].Physical Review E,2004,70(2):025101-025101. [35]ZHE C,SUN A,XIAO X.Community Detection on LargeComplex Attribute Network[C]//The 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD).2019:2041-2049. [36]SOBOLEVSKY S,CAMPARI R,BELYI A,et al.General Optimization Technique for High-quality Community Detection in Complex Networks[J].Physical Review E,2014(E 90):012811. [37]GOMEZ S,JENSEN P,ARENAS A.Analysis of CommunityStructure in Networks of Correlated Data[J].Physical Review E Statistical Nonlinear & Soft Matter Physics,2009,80(1):016114. [38]ANCHURI P,MAGDONISIMAIL M.Communities and Ba-lance in Signed Networks:A Spectral Approach[C]//Advances in Social Networks Analysis and Mining.2012:235-242. [39]CAI Q,GONG M,BO S,et al.Discrete Particle Dwarm Optimization for Identifying Community Structures in Signed Social Networks[J].Neural Networks,2014,58(10):4-13. [40]SHEN H,CHENG X,CAI K,et al.Detect Overlapping and Hierarchical Community Structure in Networks[J].Physica A Statistical Mechanics & Its Applications,2008,388(8):1706-1712. [41]WALTMAN L,VAN N J.A Smart Local Moving Algorithm for Large-scale Modularity-Based Community Detection[J].European Physical Journal B,2013,86(11):471. [42]FORTUNATO S,BARTHELEMY M.Resolution Limit inCommunity Detection[J].Proceedings of the National Academy of Sciences,2007,104(1):36-41. [43]ZHU J,CHEN B,ZENG Y.Community Detection Based onModularity and K-plexes[J].Information Sciences,2020,513:127-142. [44]DINH T N,THAI M T.Community Detection in Scale-FreeNetworks:Approximation Algorithms for Maximizing Modularity[J].IEEE Journal on Selected Areas in Communications,2013,31(6):997-1006. [45]PRAMANIK S,TACKX R,NAVELKAR A,et al.Discovering Community Structure in Multilayer Networks [C]//IEEE International Conference on Data Science and Advanced Analy-tics.2017:611-620. [46]LEE D D,SEUNG H S.Algorithms for Non-negative MatrixFactorization[J].Neural Information Processing Systems,2000,13(6):556-562. [47]PENG S,SER W,CHEN B,et al.Robust Semi-supervisedNonnegative Matrix Factorization for Image Clustering[J].Pattern Recognition,2021,111:107683. [48]LUO H,HAN J.Nonnegative Matrix Factorization BasedTransfer Subspace Learning for Cross-Corpus Speech Emotion Recognition[J].IEEE/ACM Transactions on Audio,Speech,and Language Processing,2020,28:2047-2060. [49]CAI H,LIU B,XIAO Y,et al.Semi-Supervised Multi-viewClustering Based on Orthonormality-Constrained Nonnegative Matrix Factorization[J].Information Sciences,2020,536:171-184. [50]LI D,LIN Q,MA X.Identification of Dynamic Community inTemporal Network via Joint Learning graph Representation and Nonnegative Matrix Factorization[J].Neurocomputing,2021,435:77-90. [51]MA X,DONG D,WANG Q,et al.Community Detection inMulti-layer Networks Using Joint Nonnegative Matrix Factori-zation[J].IEEE Trans on Knowledge and Data Engineering,2019,31(2):273-286. [52]LU H,SHEN Z,SANG X,et al.Community Detection Method Using Improved Density Peak Clustering and Nonnegative Matrix Factorization[J].Neurocomputing,2020,415:247-257. [53]YANG L,CAO X,JIN D,et al.A Unified Semi-Supervised Community Detection Framework Using Latent Space Graph Regularization[J].IEEE Transactions on Cybernetics,2015,45(11):2585-2598. [54]WANG F,LI T,WANG X,et a1.Community Discovery Using Nonnegative Matrix Factorization[J].Data Mining and Know-ledge Discovery,2011,22(3):493-521. [55]ZHANG Y,YEUNG D.Overlapping Community Detection via Bounded Nonnegative Matrix Tri-factorization[C]//The 18th ACM SIGKDD International Conference on Knowledge Disco-very and Data Mining(KDD).2012:606-614. [56]DING C,TAO L,WEI P,et al.Orthogonal Nonnegative Matrix Tri-factorizations for Clustering[C]//12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD).2006:126-135. [57]CAO J,WANG H,JIN D,et al.Combination of Links andNode Contents for Community Discovery Using a Graph Regularization Approach[J].Future Generation Computer Systems,2019,91(FEB):361-370. [58]PEI Y,CHAKRABORTY N,SYCARA K.Nonnegative Matrix tri-factorization with Graph Regularization for Community Detection in Social Networks[C]//The 24th International Conference on Artificial Intelligence.AAAI,2015:2083-2089. [59]WANG X,JIN D,CAO X,et al.Semantic Community Identification in Large Attribute Networks[C]//The 30th AAAI Conference on Artificial Intelligence.AAAI,2016:265-271. [60]LU H,SANG X,ZHAO Q,et al.Community Detection Algorithm Based on Nonnegative Matrix Factorization and Pairwise Constraints[J].Physica A:Statistical Mechanics and its Applications,2019,545:123491. [61]SHI X,LU H,HE Y,et al.Community Detection in Social Network with Pairwisely Constrained Symmetric Non-Negative Matrix Factorization[C]//IEEE/ACM International Conference on Advances in Social Networks Analysis & Mining(ASONAM).2015:541-546. [62]ZHANG L,YANG L,GONG Y,et al.Community Discovery on Multi-View Social Networks via Joint Regularized Nonnegative Matrix Triple Factorization[J].IEICE Transactions on Information & Systems,2017,E100.D(6):1262-1270. [63]JIN H,YU W,LI S.Graph Regularized Nonnegative Matrix Tri-factorization for Overlapping Community Detection[J].Physica A:Statistical Mechanics and its Applications,2019,515:376-387. [64]LI Z,CHEN J,FU Y,et al.Community Detection Based on Regularized Semi-Nonnegative Matrix Tri-Factorization in Signed Networks[J].Mobile Networks and Applications,2017,23(2):1-9. [65]MA C,LIN Q,Y LIN,et al.Identification of Multi-layer Networks Community by Fusing Nonnegative Matrix Factorization and Topological Structural Information[J].Knowledge-Based Systems,2021,213:106666. [66]TIAN F,GAO B,CUI Q,et al.Learning Deep Representations for Graph Clustering[C]//The 28th AAAI Conference on Artificial Intelligence.AAAI,2014:1293-1299. [67]YANG L,CAO X,HE D,et al.Modularity Based CommunityDetection with Deep Learning[C]//International Joint Confe-rence on Artificial Intelligence(IJCAI).2016:2252-2258. [68]JIN D,GE M,LI Z,et al.Using Deep Learning for Community Discovery in Social Networks[C]//2017 IEEE 29th International Conference on Tools with Artificial Intelligence(ICTAI).2017:160-167. [69]CAO J,JIN D,YANG L,et al.Incorporating Network Structure with Node Contents for Community Detection on Large Networks Using Deep Learning[J].Neurocomputing,2018,297:71-81. [70]CAO J,JIN D,DANG J.Autoencoder Based Community Detection with Adaptive Integration of Network Topology and Node Contents[C]//International Conference on Knowledge Science,Engineering and Management(KSEM).2018:184-196. [71]SKRLJ B,KRALJ J,LAVRA N.Embedding-Based Silhouette Community Detection[J].Machine Learning,2020,109(1):161-219. [72]HU L,GUO G.An Augmented Lagrangian Alternating Direction Method for Overlapping Community Detection Based on Symmetric Nonnegative Matrix Factorization[J].International Journal of Machine Learning and Cybernetics,2020,11(6755):403-415. [73]VANDANA B,RANI R.A Distributed Overlapping Community Detection Model for Large Graphs Using Autoencoder[J].Future Generation Computer Systems,2019(94):16-26. [74]SUN H,HE F,HUANG J,et al.Network Embedding forCommunity Detection in Attributed Networks[J].ACM Transactions on Knowledge Discovery from Data,2020,14(3):1-25. [75]XU R,CHE Y,WANG X,et al.Stacked Autoencoder-BasedCommunity Detection Method via an Ensemble Clustering Framework [J].Information Sciences,2020,526:151-165. [76]JIA Y,ZHANG Q,ZHANG W,et al.CommunityGAN:Com-munity Detection with Generative Adversarial Nets[C]//The World Wide Web Conference(WWW).2019:784-794. [77]ZHANG Y,XIONG Y,YE Y,et al.SEAL:Learning Heuristics for Community Detection with Generative Adversarial Networks[C]//The 26th ACM SIGKDD Conference on Know-ledge Discovery and Data Mining(KDD).2020:1103-1113. [78]CHEN J,GONG Z,DAI Q,et al.Adversarial Learning forOverlapping Community Detection and Network Embedding[C]//The 24th European Conference on Artificial Intelligence.2020:1071-1078. [79]YANG L,WANG Y,GU J,et al.JANE:Jointly Adversarial Network Embedding[C]//The 29th International Joint Conference on Artificial Intelligence(IJCAI).2020:1381-1387. [80]HONG H,LI X,WANG M.GANE:A Generative AdversarialNetwork Embedding[J].IEEE Transactions on Neural Networks and Learning Systems,2020,31(7):2325-2335. [81]YAO Z,YUN X,YUN Y,et al.SEAL:Learning Heuristics for Community Detection with Generative Adversarial Networks[C]//The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining(KDD).2020:1103-1113. [82]KIPFT N,WELLING M.Semi-Supervised Classification withGraph Convolutional Networks[C]//International Conference on Learning Representations.2017. [83]HE D,SONG Y,JIN D,et al.Community-Centric Graph Convolutional Network for Unsupervised Community Detection[C]//Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence(IJCAI).2020:3515-3521. [84]JIN D,LI B,JIAO P,et al.Community Detection via JointGraph Convolutional Network Embedding in Attribute Network[C]//The 28th International Conference on Artificial Neural Networks.2020:594-606. [85]SATTAR N S,ARIFUZZAMAN S.Community Detection using Semi-supervised Learning with Graph Convolutional Network on GPUs[C]//The IEEE International Conference on Big Data.2020:5237-5246. [86]WANG Y,DUAN Z,LIAO B,et al.Heterogeneous Attributed Network Embedding with Graph Convolutional Networks[C]//The AAAI Conference on Artificial Intelligence.AAAI,2019:10061-10062. [87]JIN D,LIU Z,LI W,et al.Graph Convolutional NetworksMeet Markov Random Fields:Semi-supervised Community Detection in Attribute Networks[C]//The AAAI Conference on Artificial Intelligence.AAAI,2019:152-159. [88]SHCHUR O,GUNNEMANN S.Overlapping Community De-tection with Graph Neural Networks[J].arXiv:1909.12201,2019. [89]ROSSETTI G,CAZABET R.Community Discovery in DynamicNetworks:A Survey[J].ACM Computing Surveys,2017,51(2):1-37. [90]CHAKRABARTI D,KUMAR R,TOMKINS A.Evolutionary Clustering[C]//The ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD).2006:554-560. [91]PALLA G,BARABASI A L,VICSEK T.Quantifying SocialGroup Evolution[J].Nature,2007:446(7136):664-667. [92]HOPCROFT J,KHAN O,KULIS B,et al.Tracking evolvingcommunities in large linked networks[J].National Academy of Sciences,2004,101(1):5249-5253. [93]ZHUANG D.Modularity-Based Dynamic Community Detection[J].IEEE Transactions on Knowledge and Data Engineering,2017,33(5):1934-1945. [94]YANG B,LIU D Y.Force-Based Incremental Algorithm forMining Community Structure in Dynamic Network[J].Journal of Computer Science and Technology,2006,21(3):393-440. [95]GUO K,HE L,HUANG J,et al.A Local Dynamic Community Detection Algorithm Based on Node Contribution [C]//Conference on Computer Supported Cooperative Work.2019:363-376. [96]WU Z,CHEN J,ZHANG Y.An Incremental Community Detection Method in Social Big Data[C]//2018 IEEE/ACM 5th International Conference on Big Data Computing Applications and Technologies(BDCAT).2018:136-141. [97]HU Y,YANG B,LV C.A Local Dynamic Method for TrackingCommunities and Their Evolution in Dynamic Networks[J].Knowledge-Based Systems,2016,110(5):176-190. [98]AL-SHAROA,E,ALKHASSAWENEH M.Tensor Based Temporal and Multilayer Community Detection for Studying Brain Dynamics During Resting State fMRI[J].IEEE Transactions on Biomedical Engineering,2019,66(3):695-709. [99]SARIYUCE A E,GEDIK B,JACQUES-SILVA G,et al.SON-IC:Streaming Overlapping Community Detection[J].Data Mining and Knowledge Discovery,2016,30(4):819-847. [100]LI X,WU B,QIAN G,et al.Dynamic Community Detection Algorithm Based on Incremental Identification[C]//IEEE International Conference on Data Mining Workshop(ICDMW).2015:900-907. [101]CHI Y,SONG X,ZHOU D,et al.On Evolutionary SpectralClustering[J].ACM Transactions on Knowledge Discovery from Data,2009,3(4):1-30. [102]LIN Y,CHI Y,ZHU S,et al.Analyzing Communities and Their Evolutions in Dynamic Social Networks[C]//International Conference on World Wide Web(WWW).2008:685-694. [103]FOLINO F,PIZZUTI C.An Evolutionary Multiobjective Ap-proach for Community Discovery in Dynamic Networks[J].IEEE Transactions on Knowledge & Data Engineering,2014,26(8):1838-1852. [104]YU W,WANG W,JIAO P,et al.Evolutionary Clustering via Graph Regularized Nonnegative Matrix Factorization for Exploring Temporal Networks[J].Knowledge Based Systems,2019,167(MAR.1):1-10. [105]YIN Y,ZHAO Y,LI H,et al.Multi-Objective EvolutionaryClustering for Large-scale Dynamic Community Detection[J].Information Sciences,2020,549(3C5):269-287. [106]MA X,ZHANG B,MA C,et al.Co-regularized NonnegativeMatrix Factorization for Evolving Community Detection in Dynamic Networks[J].Information Sciences,2020,528(6224):265-279. [107]MA X,DONG D.Evolutionary Nonnegative Matrix Factoriza-tion Algorithms for Community Detection in Dynamic Networks[J].IEEE Transactions on Knowledge and Data Engineering,2017,29(5):1045-1058. [108]JIAO P,YU W,Wang W,et al.Exploring Temporal Community Structure and Constant Evolutionary Pattern Hiding in Dynamic Networks[J].Neurocomputing,2018,314(7):224-233. [109]YU W,WANG W,JIAO P,et al.Modeling the Local and Global Evolution Pattern of Community Structures for Dynamic Networks Analysis[J].IEEE Access,2019,7(99):71350-71360. [110]WANG S,LI G,HU G,et al.Community Detection in Dynamic Networks Using Constraint Non-negative Matrix Factorization[J].Intelligent Data Analysis,2020,24(1):119-139. [111]KIM M S,HAN J.A Particle-and-density Based EvolutionaryClustering Method for Dynamic Networks[J].Proceedings of the Vldb Endowment,2009,2(1):622-633. [112]JIAO P,LYU H,LI X,et al.Temporal Community DetectionBased on Symmetric Nonnegative Matrix Factorization[J].International Journal of Modern Physics B,2017,31(13):1750102. [113]ZENG X,WANG W,CHEN C,et al.A Consensus Community-Based Particle Swarm Optimization for Dynamic Community Detection[J].IEEE Transactions on Cybernetics,2020,50(6):2502-2513. [114]DANON L,DIAZGUILERA A,DUCH J,et al.Comparing community structure identification[J].Journal of Statistical Mechanics:Theory and Experiment,2005,2005(9). [115]LIN W,KONG X,YU P S,et al.Community detection in incomplete information networks[C]//International World Wide Web Conferences.2012:341-350. |
[1] | 郑文萍, 刘美麟, 杨贵. 一种基于节点稳定性和邻域相似性的社区发现算法 Community Detection Algorithm Based on Node Stability and Neighbor Similarity 计算机科学, 2022, 49(9): 83-91. https://doi.org/10.11896/jsjkx.220400146 |
[2] | 何茜, 贺可太, 王金山, 林绅文, 杨菁林, 冯玉超. 比特币实体交易模式分析 Analysis of Bitcoin Entity Transaction Patterns 计算机科学, 2022, 49(6A): 502-507. https://doi.org/10.11896/jsjkx.210600178 |
[3] | 杨波, 李远彪. 数据科学与大数据技术课程体系的复杂网络分析 Complex Network Analysis on Curriculum System of Data Science and Big Data Technology 计算机科学, 2022, 49(6A): 680-685. https://doi.org/10.11896/jsjkx.210800123 |
[4] | 王本钰, 顾益军, 彭舒凡, 郑棣文. 融合动态距离和随机竞争学习的社区发现算法 Community Detection Algorithm Based on Dynamic Distance and Stochastic Competitive Learning 计算机科学, 2022, 49(5): 170-178. https://doi.org/10.11896/jsjkx.210300206 |
[5] | 陈世聪, 袁得嵛, 黄淑华, 杨明. 基于结构深度网络嵌入模型的节点标签分类算法 Node Label Classification Algorithm Based on Structural Depth Network Embedding Model 计算机科学, 2022, 49(3): 105-112. https://doi.org/10.11896/jsjkx.201000177 |
[6] | 赵学磊, 季新生, 刘树新, 李英乐, 李海涛. 基于路径连接强度的有向网络链路预测方法 Link Prediction Method for Directed Networks Based on Path Connection Strength 计算机科学, 2022, 49(2): 216-222. https://doi.org/10.11896/jsjkx.210100107 |
[7] | 原慧琳, 冯宠. 基于k-shell熵的影响力节点的排序与识别 Ranking and Recognition of Influential Nodes Based on k-shell Entropy 计算机科学, 2022, 49(11A): 210800177-5. https://doi.org/10.11896/jsjkx.210800177 |
[8] | 原慧琳, 韩真, 冯宠, 黄碧, 刘军涛. 基于核心节点影响力的社区发现方法 Community Discovery Method Based on Influence of Core Nodes 计算机科学, 2022, 49(11A): 211100002-7. https://doi.org/10.11896/jsjkx.211100002 |
[9] | 刘扬, 郑文萍, 张川, 王文剑. 一种基于局部随机游走的标签传播算法 Local Random Walk Based Label Propagation Algorithm 计算机科学, 2022, 49(10): 103-110. https://doi.org/10.11896/jsjkx.220400145 |
[10] | 蒲实, 赵卫东. 一种面向动态科研网络的社区检测算法 Community Detection Algorithm for Dynamic Academic Network 计算机科学, 2022, 49(1): 89-94. https://doi.org/10.11896/jsjkx.210100023 |
[11] | 李家文, 郭炳晖, 杨小博, 郑志明. 基于信息传播的致病基因识别研究 Disease Genes Recognition Based on Information Propagation 计算机科学, 2022, 49(1): 264-270. https://doi.org/10.11896/jsjkx.201100129 |
[12] | 穆俊芳, 郑文萍, 王杰, 梁吉业. 基于重连机制的复杂网络鲁棒性分析 Robustness Analysis of Complex Network Based on Rewiring Mechanism 计算机科学, 2021, 48(7): 130-136. https://doi.org/10.11896/jsjkx.201000108 |
[13] | 胡军, 王雨桐, 何欣蔚, 武晖栋, 李慧嘉. 基于复杂网络的全球航空网络结构分析与应用 Analysis and Application of Global Aviation Network Structure Based on Complex Network 计算机科学, 2021, 48(6A): 321-325. https://doi.org/10.11896/jsjkx.200900112 |
[14] | 杨林, 王永杰. 蚁群算法在动态网络持续性路径预测中的运用及仿真 Application and Simulation of Ant Colony Algorithm in Continuous Path Prediction of Dynamic Network 计算机科学, 2021, 48(6A): 485-490. https://doi.org/10.11896/jsjkx.200800132 |
[15] | 王学光, 张爱新, 窦炳琳. 复杂网络上的非线性负载容量模型 Non-linear Load Capacity Model of Complex Networks 计算机科学, 2021, 48(6): 282-287. https://doi.org/10.11896/jsjkx.200700040 |
|