计算机科学 ›› 2021, Vol. 48 ›› Issue (6A): 485-490.doi: 10.11896/jsjkx.200800132

• 信息安全 • 上一篇    下一篇

蚁群算法在动态网络持续性路径预测中的运用及仿真

杨林, 王永杰   

  1. 国防科技大学电子对抗学院 合肥230037
    安徽省网络空间安全态势感知与评估重点实验室 合肥230037
  • 出版日期:2021-06-10 发布日期:2021-06-17
  • 通讯作者: 王永杰(w_yong_j@189.cn)
  • 作者简介:yanglin0815@nudt.edu.cn

Application and Simulation of Ant Colony Algorithm in Continuous Path Prediction of Dynamic Network

YANG Lin, WANG Yong-jie   

  1. College of Electromagnetic Countermeasure,National University of Defense Technology,Hefei 230037,China
    Anhui Province Key Laboratory of Cyberspace Security Situation Awareness and Evaluation,Hefei 230037,China
  • Online:2021-06-10 Published:2021-06-17
  • About author:YANG Lin,born in 1995,postgraduate,is a member of China Computer Federation.His main research interests include cyberspace security,network security situational awareness and artificial intelligence.
    WANG Yong-jie,born in 1974,Ph.D,associate professor.His main research interests include cyberspace security,risk assessment and information system modeling and simulation.

摘要: 随着主动防御手段的广泛运用,动态多变性成为了网络系统的显著特征,在讨论了网络系统安全性时不可避免地需要以动态网络环境为基础,路径预测作为网络安全评估的常用方法,也需要适应动态网络环境以具备持续高效的特性。为了解决这个问题,提出将蚁群优化算法运用到网络持续性路径预测中,并设计仿真实验,在寻优精度和寻优速度两个方面,将所提方法与完全随机算法和贪婪算法进行比较。仿真实验结果表明,原始蚁群算法的寻优精度不如完全随机算法,但由于启发式信息的引导,其寻优速度远优于完全随机算法。为了均衡原始蚁群算法和完全随机算法各自的优势,提出新的蚁群信息素更新策略,并再次设计仿真实验验证算法的寻优效率。最终的实验结果显示,改进后的蚁群优化算法能够较好地综合原始蚁群算法和完全随机算法的优点,达到寻优精度和寻优速度的均衡。然而,在下一步的研究中还需要继续进行算法优化,使其能够更好、更完全地继承两者的优点,实现精度和速度兼优。

关键词: 动态网络, 仿真实验, 路径预测, 蚁群优化算法

Abstract: With the widespread use of active defense methods,dynamic variability has become a prominent feature of network systems.When discussing network system security,it is inevitable to base on dynamic network environment.Path prediction,as a common method of network security assessment,also needs to adapt to dynamic network environment and have the characteristics of continuous and efficient.In order to solve this problem,it is proposed to apply the ant colony optimization algorithm to the continuous path prediction of the network,and to design a simulation experiment to compare it with the completely random algorithm and the greedy algorithm in terms of optimization accuracy and optimization speed.The simulation experiment results show that the optimization accuracy of the original ant colony algorithm is not as good as the completely random algorithm,but due to the guidance of heuristic information,its optimization speed is much better than the completely random algorithm.In order to balance the advantages of the original ant colony algorithm and the completely random algorithm,a new ant colony pheromone update strategy is proposed,and a simulation experiment is designed to verify the efficiency of the algorithm.The final experimental results show that the improved ant colony optimization algorithm can better integrate the advantages of the original ant colony algorithm and the completely random algorithm,and achieve a balance between optimization accuracy and optimization speed.Howe-ver,it is necessary to continue to optimize the algorithm in the next research,so that it can better and more completely inherit the advantages of the original ant colony algorithm and the completely random algorithm,and achieve a high level both in accuracy and speed.

Key words: Ant colony optimization algorithm, Dynamic network, Path prediction, Simulation experiment

中图分类号: 

  • TP393.08
[1] DURKOTA K,LISY V,KIEKINTVELD C,et al.Case Studies of Network Defense with Attack Graph Games[J].IEEE Intelligent Systems,2016,31(5):24-30.
[2] XIONG X L,YANG L,ZHAO G S.Effectiveness EvaluationModel of Moving Target Defense Based on System Attack Surface [J].IEEE Access,2019,7:9998-10014.
[3] GORDON L,LOEB M,LUCYSHYN W,et al.2016 CSI/FBIcomputer crime and security survey [C]//Proceedings of the 2016 Computer Security Institute,2016.San Francisco:IEEE.
[4] NITRD.Cybersecurity game-change research & developmentrecommendations [OL].http://www.nitrd.gov/pubs/CSIAIWG%20Cyberscurty%20GameChange_RD%20Recom-mendations 20100513.pdf,2014-03-21.
[5] WU J X.Research on Cyber Mimic Defense[J].Journal of Cyber Security,2016,1:1-10.
[6] NI Z,LI Q M,LIU G.Game-Model-Based Network SecurityRisk Control [J].Computer,2018,51(4):28-38.
[7] HU Q.Attack Prediction Method Based on Multi-step AttackScenario[J].Computer Science,2019(46):365-369.
[8] ZHANG Y C,ZHOU T Y,GE X Y,et al.An improved attack path discovery algorithm through compact graph planning [J].IEEE Access,2019,7:1.
[9] MUÑOZ-GONZALEZ L,SGANDURRA D,PAUDICE A,et al.Efficient Attack Graph Analysis through Approximate Inference[J].ACM Transactions on Privacy and Security,2017,20(3):1-30.
[10] BENNET D J,MCINNES C R.Distributed control of multi-robot systems using bifurcating potential fields [J].Robotics and Autonomous Systems,2010,58(3):256-264.
[11] SHOU S,CHEN L S,GUO D H,et al.Dynamic Shortest Path Monitoring in Spatial Networks [J].Journal of Computer Science and Technology,2016,31(4):637-648.
[12] LIU R C,LIU J D,HE M M.A multi-objective ant colony optimization with decomposition for community detection in complex networks [J].Transactions of the Institute of Measurement and Control,2018,41(9):2521-2534.
[13] SHAHABI SANI N,MANTHOURI M,FARIVAR F.A multi-objective ant colony optimization algorithm for community detection in complex networks [J].Journal of Ambient Intelligence and Humanized Computing,2020,11(1):5-21.
[14] SONG Q,ZHAO Q L,WANG S X,et al.Dynamic Path Planning for Unmanned Vehicles Based on Fuzzy Logic and Improved Ant Colony Optimization[J].IEEE Access,2020,8:62107-62115.
[15] DORIGO M,GAMBARDELLA L M.Ant colony system:a cooperative learning approach to the traveling salesman problem [J].IEEE Transactions on Evolutionary Computation,1997,1(1):53-66.
[16] LIU J W,LIU J J,LU Y L,et al.Optimal Defense Strategy Selection Method Based on Network Attack-Defense Game Model[J].Computer Science,2018(45):117-123.
[17] FRANK H,FRISCH I.Analysis and Design of Survivable Networks [J].IEEE Transactions on Communication Technology,1970(5):501-519.
[18] WU J,TAN S Y,TAN Y J,et al.Analysis of Invulnerability in Complex Networks Based on Natural Connectivity[J].Complex Systems and Complexity Science,2014(11):77-86.
[1] 蒲实, 赵卫东.
一种面向动态科研网络的社区检测算法
Community Detection Algorithm for Dynamic Academic Network
计算机科学, 2022, 49(1): 89-94. https://doi.org/10.11896/jsjkx.210100023
[2] 富坤, 仇倩, 赵晓梦, 高金辉.
基于节点演化分阶段优化的事件检测方法
Event Detection Method Based on Node Evolution Staged Optimization
计算机科学, 2020, 47(5): 96-102. https://doi.org/10.11896/jsjkx.190400072
[3] 赵卫绩,张凤斌,刘井莲.
复杂网络社区发现研究进展
Review on Community Detection in Complex Networks
计算机科学, 2020, 47(2): 10-20. https://doi.org/10.11896/jsjkx.190100214
[4] 付立东,聂靖靖.
基于进化谱分方法的动态社团检测
Dynamic Community Detection Based on Evolutionary Spectral Method
计算机科学, 2018, 45(2): 171-174. https://doi.org/10.11896/j.issn.1002-137X.2018.02.030
[5] 张岩庆,陆余良,杨国正.
基于频繁闭图关联规则的AS级Internet链路预测方法
Link Prediction of AS Level Internet Based on Association Rule of Frequent Closed Graphs
计算机科学, 2016, 43(Z6): 314-318. https://doi.org/10.11896/j.issn.1002-137X.2016.6A.075
[6] 高法钦.
一种基于概率的路径预测与查询算法
Path Prediction and Query Algorithm Based on Probability
计算机科学, 2016, 43(8): 207-211. https://doi.org/10.11896/j.issn.1002-137X.2016.08.042
[7] 王伟平,杨苗.
基于蚁群算法的带截止区均匀量化器的优化及其在ECG数据压缩中的应用
USDZQ Optimization Based on Ant Colony Algorithm and Application in ECG Compression
计算机科学, 2015, 42(Z11): 550-553.
[8] 陈海燕.
基于多群智能算法的云计算任务调度策略
Task Scheduling in Cloud Computing Based on Swarm Intelligence Algorithm
计算机科学, 2014, 41(Z6): 83-86.
[9] 王诏远,李天瑞,易修文.
基于MapReduce的蚁群优化算法实现方法
Approach for Development of Ant Colony Optimization Based on MapReduce
计算机科学, 2014, 41(7): 261-265. https://doi.org/10.11896/j.issn.1002-137X.2014.07.054
[10] 乔冠华,毛剑琳,郭宁,胡宇杰,王乐.
基于业务区分的IEEE802.15.4 MAC协议分析及改进
Research and Improved Design in IEEE802.15.4 MAC Protocol for Service Distinguishing
计算机科学, 2014, 41(10): 149-153. https://doi.org/10.11896/j.issn.1002-137X.2014.10.034
[11] 李庆朋,王布宏,王晓东,张春明.
基于最优攻击路径的网络安全增强策略研究
Approach on Network Security Enhancement Strategies Based on Optimal Attack Path
计算机科学, 2013, 40(4): 152-154.
[12] 易秀双,罗守昊,王兴伟,丁际文.
基于工业无线网络性能评价的规划路径算法
Planning Paths Algorithm Based on Performance Evaluation of Industrial Wireless Networks
计算机科学, 2013, 40(1): 68-72.
[13] 王学光.
基于动态网络影响扩散问题研究
Research on Influence Maximization Problem Based on Dynamic Networks
计算机科学, 2012, 39(6): 111-115.
[14] 许少华 庞跃武 何新贵.
一种基于过程神经网络的动态系统控制信号求解模型和算法
Control Signal Solving Model and Algorithm of Dynamic System Based on Process Neural Network
计算机科学, 2012, 39(1): 159-161.
[15] 罗云月,孙志峰.
基于自适应蚁群优化算法的认知决策引擎
Cognitive Radio Decision Engine Based on Adaptive Ant Colony Optimization
计算机科学, 2011, 38(8): 253-256.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!