计算机科学 ›› 2022, Vol. 49 ›› Issue (11A): 211100242-7.doi: 10.11896/jsjkx.211100242

• 大数据&数据科学 • 上一篇    下一篇

基于公理化模糊集合的模糊随机事件及其概率

谢健祥, 潘小东, 张波   

  1. 西南交通大学数学学院 成都 611756
  • 出版日期:2022-11-10 发布日期:2022-11-21
  • 通讯作者: 潘小东(xdpan1@163.com)
  • 作者简介:(912056578@qq.com)
  • 基金资助:
    国家自然科学基金(61673320,61976130);四川省应用基础研究计划项目(2020YJ0270)

Fuzzy Random Events and Its Probabilities Based on Axiomatic Fuzzy Sets

XIE Jian-xiang, PAN Xiao-dong, ZHANG Bo   

  1. School of Mathematics,Southwest Jiaotong University,Chengdu 611756,China
  • Online:2022-11-10 Published:2022-11-21
  • About author:XIE Jian-xiang,born in 1994,postgra-duate.His main research interests include fuzzy probability and so on.
    PAN Xiao-dong,born in 1979,associate professor.His main research interests include mathematical basic theory of fuzzy information processing.
  • Supported by:
    National Natural Science Foundation of China(61673320,61976130) and Sichuan Applied Basic Research Program(2020YJ0270).

摘要: 基于公理化模糊集合研究模糊随机事件的概率,定义了模糊随机事件以及相应的概率,讨论了模糊随机事件概率的一些基本性质,给出了模糊随机事件概率的乘法公式,证明了模糊随机事件的全概率公式和贝叶斯公式。

关键词: 公理化模糊集, 模糊随机事件, 概率, 全概率公式, 贝叶斯公式

Abstract: This paper studies the probability of fuzzy random events based on axiomatic fuzzy set,defines fuzzy random events and their corresponding probabilities,discusses some basic properties of probabilities of fuzzy random events,gives the product rule of fuzzy random events probability,and proves the law of total probability of fuzzy random events and Bayes’rule.

Key words: Axiomatic fuzzy sets, Fuzzy random events, Probability, Law of total probability, Bayes’rule

中图分类号: 

  • O236
[1]ZADEH L A.Fuzzy Sets[J].Information and Control,1965,8(l):338-353.
[2]ZADEH L A.Probability measures of Fuzzy events[J].Journal of Mathematical Analysis and Applications,1968,23(2):421-427.
[3]KWAHERNAAK H.Fuzzy random variables—I.Definitionsand theorems[J].Information Sciences,1978,15(1):1-29.
[4]KWAHERNAAK H.Fuzzy random variables—II.Algorithmsand examples for the discrete case[J].Information Sciences,1979,17(3):253-278.
[5]YAGER R,RONALD.A note on probabilities of fuzzy events[J].Information Sciences,1979,18(2):113-129.
[6]SMETS P.Probability of a fuzzy event:An axiomatic approach[J].Fuzzy Sets and Systems,1982,7(2):153-164.
[7]KATO Y,IZUKA T,OHTSUKI R,et al.A proposal for a new fuzzy probability distribution function[C]//IEEE International Fuzzy Systems Conference.IEEE,1999.
[8]HABIL E D,NASR T Z.On fuzzy probability theory[J].International Journal of Theoretical Physics,2002,41(4):791-810.
[9]FANG Y.Fuzzy probability theory[D].Xi’an:Northwest University,2005.
[10]MESIAR R.Fuzzy sets and probability theory[J].TatraMountains Math Publ,1992,1:105-123.
[11]LIANG,SONG P.What does a probabilistic interpretation offuzzy sets mean[J].IEEE Transactions on Fuzzy Systems,1996,4(2):200-205.
[12]MEGHDADI A H,AKBARZADEH-T M R.Probabilistic fuzzy logic and probabilistic fuzzy systems[J].Proc 10th IEEE Int Conf,2001,3(1):1127-1130.
[13]COLUBI A,FERNANDEZ-GARCIA C,GIL M A.Simulation of random fuzzy variables:an empirical approach to statistical probabilistic studies with fuzzy experimental data[J].IEEE Transactions on Fuzzy Systems,2003,10(3):384-390.
[14]LIU Y X.The Research on Fuzzy Probability Theory Based on Fuzzy Events[D].Shenyang:Northeastern University,2013.
[15]PAVLA R,ONDREJ P.Probabilities of fuzzy events and their use in decision matrices[J].International Journal of Mathema-tics in Operational Research,2016,9(4):423-435.
[16]WANG G,XU Y,QIN S.Basic Fuzzy Event Space and Probabi-lity Distribution of Probability Fuzzy Space[J].Mathematics,2019,7(6):542.
[17]WANG J.Membership function and statistical evaluation offuzzy probability[D].Harbin:Northeast Forestry University,2020.
[18]PAN X D,XU Y.Redefinition of the concept of fuzzy set based on vague partition from the perspective of axiomatization[J].Soft Computing:A Fusion of Foundations,Methodologies and Applications,2018,22(6):1777-1789.
[19]PAN X D,XU Y.Correction to:Redefinition of the concept of fuzzy set based on vague partition from the perspective of axiomatization[J].Soft Computing:A Fusion of Foundations,Methodologies and Applications,2018,22(6):2079-2079.
[20]PAN X D.On the Axiomatic Definition of Fuzzy Sets[J].Mathematics In Practice And Theory.2022,52(3):189-199.
[21]HU B Q.Basis of fuzzy theory[M].Wuhan:Wuhan University Press,2004.
[1] 徐天慧, 郭强, 张彩明.
基于全变分比分隔距离的时序数据异常检测
Time Series Data Anomaly Detection Based on Total Variation Ratio Separation Distance
计算机科学, 2022, 49(9): 101-110. https://doi.org/10.11896/jsjkx.210600174
[2] 陈慧嫔, 王琨, 杨恒, 郑智捷.
蓝舌病毒基因组序列多元概率特征可视化分析
Visual Analysis of Multiple Probability Features of Bluetongue Virus Genome Sequence
计算机科学, 2022, 49(6A): 27-31. https://doi.org/10.11896/jsjkx.210300129
[3] 李亚茹, 张宇来, 王佳晨.
面向超参数估计的贝叶斯优化方法综述
Survey on Bayesian Optimization Methods for Hyper-parameter Tuning
计算机科学, 2022, 49(6A): 86-92. https://doi.org/10.11896/jsjkx.210300208
[4] 董丹丹, 宋康.
RIS辅助双向物联网通信系统性能分析
Performance Analysis on Reconfigurable Intelligent Surface Aided Two-way Internet of Things Communication System
计算机科学, 2022, 49(6): 19-24. https://doi.org/10.11896/jsjkx.220100064
[5] 魏鹏, 马玉亮, 袁野, 吴安彪.
用户行为驱动的时序影响力最大化问题研究
Study on Temporal Influence Maximization Driven by User Behavior
计算机科学, 2022, 49(6): 119-126. https://doi.org/10.11896/jsjkx.210700145
[6] 李嘉睿, 凌晓波, 李晨曦, 李子木, 杨家海, 张蕾, 吴程楠.
基于贝叶斯攻击图的动态网络安全分析
Dynamic Network Security Analysis Based on Bayesian Attack Graphs
计算机科学, 2022, 49(3): 62-69. https://doi.org/10.11896/jsjkx.210800107
[7] 杨资集, 潘雁, 祝跃飞, 李小伟.
基于概率模型的二进制协议字段划分方法
Field Segmentation of Binary Protocol Based on Probability Model
计算机科学, 2022, 49(10): 319-326. https://doi.org/10.11896/jsjkx.210800268
[8] 洪昌建, 高阳, 张凡, 张磊.
一种可靠的水下传感器网络传输策略
Reliable Transmission Strategy for Underwater Wireless Sensor Networks
计算机科学, 2021, 48(6A): 410-413. https://doi.org/10.11896/jsjkx.201100048
[9] 王金恒, 单志龙, 谭汉松, 王煜林.
基于遗传优化PNN神经网络的网络安全态势评估
Network Security Situation Assessment Based on Genetic Optimized PNN Neural Network
计算机科学, 2021, 48(6): 338-342. https://doi.org/10.11896/jsjkx.201200239
[10] 高枫越, 王琰, 朱铁兰.
有适应力的分布式状态估计方法
Resilient Distributed State Estimation Algorithm
计算机科学, 2021, 48(5): 308-312. https://doi.org/10.11896/jsjkx.200300117
[11] 冯凯, 马鑫玉.
(n,k)-冒泡排序网络的子网络可靠性
Subnetwork Reliability of (n,k)-bubble-sort Networks
计算机科学, 2021, 48(4): 43-48. https://doi.org/10.11896/jsjkx.201100139
[12] 鲍志强, 陈卫东.
基于最大后验估计的谣言源定位器
Rumor Source Detection in Social Networks via Maximum-a-Posteriori Estimation
计算机科学, 2021, 48(4): 243-248. https://doi.org/10.11896/jsjkx.200400053
[13] 李丽, 郑嘉利, 罗文聪, 全艺璇.
基于近端策略优化的RFID室内定位算法
RFID Indoor Positioning Algorithm Based on Proximal Policy Optimization
计算机科学, 2021, 48(4): 274-281. https://doi.org/10.11896/jsjkx.200300028
[14] 张皓晨, 蔡英, 夏红科.
车载社交网中基于传递概率的路由算法
Delivery Probability Based Routing Algorithm for Vehicular Social Network
计算机科学, 2021, 48(3): 289-294. https://doi.org/10.11896/jsjkx.200200097
[15] 康波, 潘小东, 王虎.
基于公理化模糊集合的模糊推理方法
Fuzzy Reasoning Method Based on Axiomatic Fuzzy Sets
计算机科学, 2021, 48(11A): 57-62. https://doi.org/10.11896/jsjkx.201200140
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!