计算机科学 ›› 2022, Vol. 49 ›› Issue (11A): 210900220-6.doi: 10.11896/jsjkx.210900220
陈金令, 程茂凯, 徐紫涵
CHEN Jin-ling, CHENG Mao-kai, XU Zi-han
摘要: 针对经典无锚框目标检测算法FCOS( Fully Constitutional One-Stage Object Detection)难以充分提取目标特征,位置与内容信息结合能力不足,正负样本区分不充分导致性能减弱等问题,提出了一种改进型FCOS目标检测算法。该方法首先在ResNet50特征提取网络中加入可变形卷积模块与全局注意力模块,提高特征信息捕获能力;然后,将FPN特征金字塔与深层链路层相结合,构成多尺度特征融合模块,提升特征提取效果。最后,加入自适应划分正负样本模块,增强检验框的准确性以达到提高回归精度的效果,从而提升检测结果。为了测试算法的检测效果,分别使用了COCO数据集与VOC数据集进行实验。与原FCOS算法相比,所提算法在两个数据集上的平均精度分别提高了2.3%和1.8%,其中,对COCO数据集中的小目标检测的效果有明显提升。
中图分类号:
[1]REDMON J,FARHADI A.YOLO9000:Better,Faster,Stronger[C]//IEEE Conference on Computer Vision & Pattern Recognition.IEEE,2017:6517-6525. [2]REDMON J,FARHADI A.YOLOv3:An Incremental Improvement[J].arXiv:1804.02767,2018. [3]LIU W,ANGUELOV D,ERHAN D,et al.Ssd:Single ShotMultiBox Detector[C]//European Conference on Computer Vision.Cham:Springer,2016:21-37. [4]LIN T Y,GOYAL P,GIRSHICK R,et al.Focal Loss for Dense Object Detection[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2020,42(2):318-327. [5]REN S Q,HE K M,GIRSHICK,et al.FASTER R-CNN:Towards Real-Time Object Detection with Region Proposal Networks[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,39(6):1137-1149. [6]TIAN Z,SHEN C,CHEN H,et al.FCOS:A simple and strong anchor-free object detector[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,44(4):1922-1933. [7]ZHOU X,WANG D,KRHENBÜHL P.Objects as Points[J].arXiv:1904.07850,2019. [8]LAW H,DENG J.CornerNet:Detecting Objects as Paired Keypoints[J].International Journal of Computer Vision,2020,128(3):642-656. [9]YANG Z,LIU S,HU H,et al.RepPoints:Point Set Representation for Object Detection[C]//2019 IEEE/CVF International Conference on Computer Vision(ICCV).IEEE,2019. [10]LONG J,SHELHAMER E,DARRELL T.Fully Convolutional Networks for Semantic Segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,39(4):640-651. [11]LIN T Y,DOLLAR P,GIRSHICK R,et al.Feature Pyramid Networks for Object Detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).IEEE Computer Society,2017. [12]SRINIVAS A,LIN T Y,PARMAR N,et al.Bottleneck Transformers for Visual Recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:16519-16529. [13]HE K,ZHANG X,REN S,et al.Deep Residual Learning forImage Recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [14]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[C]//Proceedings of the 31st International Confe-rence on Neural Information Processing Systems(NIPS’17).2017:6000-6010. [15]HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141. [16]LIN T Y,MAIRE M,BELONGIES,et al.Microsoft COCO:common objects in context [C]//European Conference on Computer Vision(ECCV).Cham:Springer,2014:745-755. [17]EVERINGHAM M,VAN G L,WILLIAMS C K I,et al.Thepascal visual object classes(VOC) challenge [J].International Journal of Computer Vision,2010 88(2):303-338. [18]KANTOR P B.Foundations of Statistical Natural LanguageProcessing[J].Information Retrieval,2001,4(1):80-81. [19]CARION N,MASSA F,SYNNAEVE G,et al.End-to-End Object Detection with Transformers[C]//European Conference on Computer Vision.Cham:Springer,2020:213-229. [20]DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.AnImage is Worth 16x16 Words:Transformers for Image Recognition at Scale[J].arXiv:2010.11929,2020. [21]BA J L,KIROS J R,HINTON G E.Layer Normalization[J].arXiv:1607.06450,2016. [22]LOFFE S,SZEGEDY C.Batch normalization:Accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning.PMLR,2015:448-456. [23]LECUN Y,BENGIO Y.Convolutional networks for images,speech,and time series[M]//The Handbook of Brain Theory and Neural Networks.MIT press,1998:255-258. [24]DAI J,QI H,XIONG Y,et al.Deformable Convolutional Networks[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:764-773. [25]ZHANG S,CHI C,YAO Y,et al.Bridging the Gap Between Anchor-Based and Anchor-Free Detection via Adaptive Training Sample Selection[C]//2020 IEEE/CVF Conference on Compu-ter Vision and Pattern Recognition(CVPR).IEEE,2020. [26]FANG L P,HE H J,ZHOU G M.A review of target detection algorithm research[J].Computer Engineering and Applications,2018,54(13):11-18,33. |
[1] | 刘冬梅, 徐洋, 吴泽彬, 刘倩, 宋斌, 韦志辉. 基于边框距离度量的增量目标检测方法 Incremental Object Detection Method Based on Border Distance Measurement 计算机科学, 2022, 49(8): 136-142. https://doi.org/10.11896/jsjkx.220100132 |
[2] | 王灿, 刘永坚, 解庆, 马艳春. 基于软标签和样本权重优化的Anchor Free目标检测算法 Anchor Free Object Detection Algorithm Based on Soft Label and Sample Weight Optimization 计算机科学, 2022, 49(8): 157-164. https://doi.org/10.11896/jsjkx.210600240 |
[3] | 祝文韬, 兰先超, 罗唤霖, 岳彬, 汪洋. 改进Faster R-CNN的光学遥感飞机目标检测 Remote Sensing Aircraft Target Detection Based on Improved Faster R-CNN 计算机科学, 2022, 49(6A): 378-383. https://doi.org/10.11896/jsjkx.210300121 |
[4] | 马宾, 付永康, 王春鹏, 李健, 王玉立. 基于GDIoU损失函数的YOLOv4绝缘子高效定位算法 High Performance Insulators Location Scheme Based on YOLOv4 with GDIoU Loss Function 计算机科学, 2022, 49(6A): 412-417. https://doi.org/10.11896/jsjkx.210600089 |
[5] | 陈永平, 朱建清, 谢懿, 吴含笑, 曾焕强. 基于外接圆半径差损失的实时安全帽检测算法 Real-time Helmet Detection Algorithm Based on Circumcircle Radius Difference Loss 计算机科学, 2022, 49(6A): 424-428. https://doi.org/10.11896/jsjkx.220100252 |
[6] | 孙福权, 崔志清, 邹彭, 张琨. 基于多尺度特征的脑肿瘤分割算法 Brain Tumor Segmentation Algorithm Based on Multi-scale Features 计算机科学, 2022, 49(6A): 12-16. https://doi.org/10.11896/jsjkx.210700217 |
[7] | 陈佳舟, 赵熠波, 徐阳辉, 马骥, 金灵枫, 秦绪佳. 三维城市场景中的小物体检测 Small Object Detection in 3D Urban Scenes 计算机科学, 2022, 49(6): 238-244. https://doi.org/10.11896/jsjkx.210400174 |
[8] | 胡伏原, 万新军, 沈鸣飞, 徐江浪, 姚睿, 陶重犇. 深度卷积神经网络图像实例分割方法研究进展 Survey Progress on Image Instance Segmentation Methods of Deep Convolutional Neural Network 计算机科学, 2022, 49(5): 10-24. https://doi.org/10.11896/jsjkx.210200038 |
[9] | 范新南, 赵忠鑫, 严炜, 严锡君, 史朋飞. 结合注意力机制的多尺度特征融合图像去雾算法 Multi-scale Feature Fusion Image Dehazing Algorithm Combined with Attention Mechanism 计算机科学, 2022, 49(5): 50-57. https://doi.org/10.11896/jsjkx.210400093 |
[10] | 徐涛, 陈奕仁, 吕宗磊. 基于改进YOLOv3的机坪工作人员反光背心检测研究 Study on Reflective Vest Detection for Apron Workers Based on Improved YOLOv3 Algorithm 计算机科学, 2022, 49(4): 239-246. https://doi.org/10.11896/jsjkx.210200119 |
[11] | 张侣, 周博文, 吴亮红. 基于改进卷积注意力模块与残差结构的SSD网络 SSD Network Based on Improved Convolutional Attention Module and Residual Structure 计算机科学, 2022, 49(3): 211-217. https://doi.org/10.11896/jsjkx.201200019 |
[12] | 邵海琳, 季怡, 刘纯平, 徐云龙. 基于增强特征金字塔网络的场景文本检测算法 Scene Text Detection Algorithm Based on Enhanced Feature Pyramid Network 计算机科学, 2022, 49(2): 248-255. https://doi.org/10.11896/jsjkx.201100072 |
[13] | 顾曦龙, 宫宁生, 胡乾生. 基于YOLOv3与改进VGGNet的车辆多标签实时识别算法 Multi-label Vehicle Real-time Recognition Algorithm Based on YOLOv3 and Improved VGGNet 计算机科学, 2022, 49(11A): 210600142-7. https://doi.org/10.11896/jsjkx.210600142 |
[14] | 黄扬林, 胡凯, 郭建强, 彭诚. 基于多尺度特征融合和双重注意力机制的肝脏CT图像分割 Liver CT Images Segmentation Based on Multi-scale Feature Fusion and Dual AttentionMechanism 计算机科学, 2022, 49(11A): 210800162-9. https://doi.org/10.11896/jsjkx.210800162 |
[15] | 车爱博, 张辉, 李晨, 王耀南. 基于点云数据的交通环境下单阶段三维目标检测方法 Single-stage 3D Object Detector in Traffic Environment Based on Point Cloud Data 计算机科学, 2022, 49(11A): 210900079-6. https://doi.org/10.11896/jsjkx.210900079 |
|