计算机科学 ›› 2022, Vol. 49 ›› Issue (6A): 378-383.doi: 10.11896/jsjkx.210300121

• 图像处理&多媒体技术 • 上一篇    下一篇

改进Faster R-CNN的光学遥感飞机目标检测

祝文韬1, 兰先超1, 罗唤霖1, 岳彬2, 汪洋1   

  1. 1 上海航天技术研究院 上海 201109
    2 北京航空工程技术研究中心 北京 100020
  • 出版日期:2022-06-10 发布日期:2022-06-08
  • 通讯作者: 祝文韬(337938145@qq.com)

Remote Sensing Aircraft Target Detection Based on Improved Faster R-CNN

ZHU Wen-tao1, LAN Xian-chao1, LUO Huan-lin1, YUE Bing2, WANG Yang1   

  1. 1 Shanghai Academy of Spaceflight Technology,Shanghai 201109,China
    2 Beijing Aeronautical Technology Research Center,Beijing 100020,China
  • Online:2022-06-10 Published:2022-06-08
  • About author:ZHU Wen-tao,born in 1995,master,engineer.His main research interests include on-board intelligent processing and object detection.

摘要: 光学遥感图像飞机目标检测技术已广泛应用于航空交通和军事侦察等领域。针对检测多种不同尺寸飞机时小目标漏检率和虚警率高以及目标定位精度低导致的检测准确率不高的问题,文中在Faster R-CNN算法的基础上提出了一种基于双线性插值的改进ROI pooling方案,用于飞机目标检测,解决了两次量化导致的区域失配问题。实验结果表明,改进方法取得了AP(IOU≤0.5)为95.35%的检测性能,在针对多尺寸飞机检测的任务中,提高了目标定位精度和平均准确率。

关键词: Faster R-CNN, ROI pooling, 飞机目标检测, 光学遥感图像, 深度学习

Abstract: Optical remote sensing image airplane target detection technology has been widely used in the fields of air traffic and military reconnaissance.Aiming at the problem of low detection accuracy and high false alarm rate when detecting multiple aircraft of different sizes,this paper proposes an improved ROI pooling method based on bilinear interpolation for aircraft target detection,which solves the problem of mis-alignment.Experimental results show that the improved method achieves a detection performance of 95.35% AP(IOU≤0.5).In the task of multi-size airplane detection,the target positioning accuracy and average accuracy are improved.

Key words: Airplane target detection, Deep learning, Faster R-CNN, Remote sensing image, ROI pooling

中图分类号: 

  • TP753
[1] ZHANG Z X.Rapid detection of aircraft targets in large-format optical remote sensing images[D].University of Chinese Academy of Sciences(Changchun Institute of Optics,Fine Mechanics and Physics, Chinese Academy of Sciences),2018.
[2] DING P,ZHANG Y,DENG W J,et al.A light and faster regional convolutional neural network for object detection in optical remote sensing images[J].ISPRS Journal of Photogrammetry and Remote Sensing,2018,141:208-218.
[3] WU H,ZHANG H,ZHANG J,et al.Fast aircraft detection in satellite images based on convolutional neural networks[C]//2015 IEEE International Conference on Image Processing(ICIP).IEEE,2015:4210-4214.
[4] CAO Y S,NIU X,DOU Y.Region-based convolutional neural networks for object detection in very high resolution remote sensing images[C]//2016 12th International Conference on Natural Computation,Fuzzy Systems and Knowledge Discovery(ICNC-FSKD).IEEE,2016:548-554.
[5] DAI W C,JIN L X,LI G N,et al.Improved YOLOv3 real-time detection algorithm for aircraft in remote sensing images[J].Opto-Electronic Engineering,2018,45(12):84-92.
[6] GUO L,QIN S Y.Deep Learning Optimization Algorithm for Efficient Search and Inspection of Aircraft Targets in Remote Sensing Images[J/OL].2019.http://en.cnki.com.cn/Article_en/CJFDTotal-BJHK201901019.htm.
[7] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:Unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:779-788.
[8] REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2015,39(6):1137-1149.
[9] XIA G S,BAI X,DING J,et al.DOTA:A large-scale dataset for object detection in aerial images[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:3974-3983.
[10] ZHU H,CHEN X,DAI W,et al.Orientation robust object detection in aerial images using deep convolutional neural network[C]//2015 IEEE International Conference on Image Processing(ICIP).IEEE,2015:3735-3739.
[11] CHENG G,HAN J,ZHOU P,et al.Multi-class geospatial object detection and geographic image classification based on collection of part detectors[J].ISPRS Journal of Photogrammetry and Remote Sensing,2014,98:119-132.
[12] LONG Y,GONG Y,XIAOZ,et al.Accurate object localization in remote sensing images based on convolutional neural networks[J].IEEE Transactions on Geoscience and Remote Sen-sing,2017,55(5):2486-2498.
[13] LI K,WAN G,CHENG G,et al.Object detection in optical remote sensing images:A survey and a new benchmark[J].ISPRS Journal of Photogrammetry and Remote Sensing,2020,159:296-307.
[14] GIRSHICK R.Fast r-cnn[C]//Proceedings of the IEEE International Conference on Computer Vision.2015:1440-1448.
[15] SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:2818-2826.
[1] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[2] 汤凌韬, 王迪, 张鲁飞, 刘盛云.
基于安全多方计算和差分隐私的联邦学习方案
Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy
计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108
[3] 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺.
时序知识图谱表示学习
Temporal Knowledge Graph Representation Learning
计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204
[4] 王剑, 彭雨琦, 赵宇斐, 杨健.
基于深度学习的社交网络舆情信息抽取方法综述
Survey of Social Network Public Opinion Information Extraction Based on Deep Learning
计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099
[5] 郝志荣, 陈龙, 黄嘉成.
面向文本分类的类别区分式通用对抗攻击方法
Class Discriminative Universal Adversarial Attack for Text Classification
计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077
[6] 姜梦函, 李邵梅, 郑洪浩, 张建朋.
基于改进位置编码的谣言检测模型
Rumor Detection Model Based on Improved Position Embedding
计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046
[7] 孙奇, 吉根林, 张杰.
基于非局部注意力生成对抗网络的视频异常事件检测方法
Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection
计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061
[8] 胡艳羽, 赵龙, 董祥军.
一种用于癌症分类的两阶段深度特征选择提取算法
Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification
计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092
[9] 程成, 降爱莲.
基于多路径特征提取的实时语义分割方法
Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction
计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157
[10] 侯钰涛, 阿布都克力木·阿布力孜, 哈里旦木·阿布都克里木.
中文预训练模型研究进展
Advances in Chinese Pre-training Models
计算机科学, 2022, 49(7): 148-163. https://doi.org/10.11896/jsjkx.211200018
[11] 周慧, 施皓晨, 屠要峰, 黄圣君.
基于主动采样的深度鲁棒神经网络学习
Robust Deep Neural Network Learning Based on Active Sampling
计算机科学, 2022, 49(7): 164-169. https://doi.org/10.11896/jsjkx.210600044
[12] 苏丹宁, 曹桂涛, 王燕楠, 王宏, 任赫.
小样本雷达辐射源识别的深度学习方法综述
Survey of Deep Learning for Radar Emitter Identification Based on Small Sample
计算机科学, 2022, 49(7): 226-235. https://doi.org/10.11896/jsjkx.210600138
[13] 刘伟业, 鲁慧民, 李玉鹏, 马宁.
指静脉识别技术研究综述
Survey on Finger Vein Recognition Research
计算机科学, 2022, 49(6A): 1-11. https://doi.org/10.11896/jsjkx.210400056
[14] 孙福权, 崔志清, 邹彭, 张琨.
基于多尺度特征的脑肿瘤分割算法
Brain Tumor Segmentation Algorithm Based on Multi-scale Features
计算机科学, 2022, 49(6A): 12-16. https://doi.org/10.11896/jsjkx.210700217
[15] 康雁, 徐玉龙, 寇勇奇, 谢思宇, 杨学昆, 李浩.
基于Transformer和LSTM的药物相互作用预测
Drug-Drug Interaction Prediction Based on Transformer and LSTM
计算机科学, 2022, 49(6A): 17-21. https://doi.org/10.11896/jsjkx.210400150
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!